Archive for the 'Pharmakologie und Toxikologie' Category

Jul 9th, 2009

Diskussion

Posted by admin @ 12:33 pm

5 Diskussion

Die Spätdifferenzierung der humanen Chondrozyten im Rippenknorpel Knorpelmatrix besteht hauptsächlich aus Kollagen II, IX und XI und dem Proteoglycan Aggrecan. In mineralisiertem Knorpel finden sich zusätzlich knochenspezifische Moleküle wie alkalische Phosphatase, Osteonectin, Osteocalcin, Osteopontin und bone sialoprotein(BSP). Die Zusammenlagerung dieser Proteine wird durch Hydroxyapatit in der extrazellulären Matrix stabilisiert. Ferner bilden hypertrophierte Chondrozyten Kollagen X.
Treten Kollagen X, die alkalische Phosphatase und eine Proliferation der Knorpelzellen gemeinsam auf, ist dies ein Merkmal für die terminale Differenzierung des Knorpelgewebes.
Durch immunhistochemische und biochemische Analysen sowie die ultrastrukturelle Untersuchung wurde Kollagen X in der extrazellulären Matrix des Knorpelgewebes nachgewiesen und in Verbindung zum Prozeß der Mineralisation von Knorpelgewebe gebracht. Auch wenn man sich über das Vorkommen von Kollagen X nur in hypertrophierten Knorpel einig ist, bestehen dennoch gegensätzliche Hypothesen über dessen Funktion. Einerseits wird dem Kollagen X eine fördernde Wirkung auf die Mineralisierung zugeschrieben, da kollagen X sowohl an Bestandteile der Matrixvesikel, AnexinVI, Anexin V und alkalische Phosphatase als auch an Kalzium bindet (Wu et al.,1991). Andererseits wird angenommen, daß Kollagen X die Mineralisierung hemmt, weil es perizellulär in Form von Filamentfasern vorliegt, wo keine Mineralisierung statt findet.
Außerdem befindet sich Kollagen X in Eierschalen, die kein Hydroxyapatit aufweisen. (Arias et al.,1991; Schmid et al., 1991)
In unserer Studie haben wir die Spätdifferenzierung im Rippenknorpel während der Entwicklung der Chondrozyten untersucht. Für die Bestimmung der Differenzierung ist es notwendig, die Marker für die terminale Differenzierung im Gewebe und in der Zellkultur nachzuweisen. Frühere Untersuchungen an Rippenknorpel von Classen et al., (1996), Kämpen et al., (1996), und Bonucci et al., 1976, haben eine Spätdifferenzierung an Rippenknorpel ohne Kollagen X-Synthese, eine Degeneration der extrazellulären Matrix, Mineralisation (nach der Pubertät), alkalische Phosohatase-Aktivität (nach der Pubertät) und eine Korrelation der Mineralisation mit der Vaskula-risierung ergeben. Koebke und Saternus, (1982 & 1985) fanden eine reine Ossifikation ohne vorherige Mineralisation. Im 5 Diskussion 95 Gegensatz zu diesen Berichten in der Literatur haben wir Kollagen X sowohl in Zellkultur als auch im Gewebe (vor und nach der Pubertät) nachgewiesen. Außerdem haben wir alkalische Phosphatase-Aktivität und eine Mineralisation der extrazellulären Matrix sowohl im Rippenknorpel (nur nach der Pubertät) als auch in Zellkultur festgestellt. Daher schließen wir, daß alkalische Phosphatase für die Mineralisation essentiell ist.

Bei 5-jährigen Kindern wurde bereits Kollagen X synthetisiert, obwohl die Mineralisation erst nach der Pubertät einsetzt. Daher stellt sich die Frage, ob Kollagen X für die Mineralisation ebenfalls notwendig ist. Da nach der Pubertät auch die alkalische Phosphatase nachweisbar ist und damit die Mineralisation einsetzt, besteht die Möglichkeit, daß beide Faktoren (nicht Kollagen X alleine, sondern zusammen mit alkalischer Phosphatase) die Mineralisation induzieren. Das verzögerte Auftreten der alkalischen Phosphatase und Mineralisation läßt vermuten, daß die Expression von Signalen durch Kollagen X und/oder ALP reguliert werden.Daher empfiehlt es sich, die Konzentration im Rippenknorpel von zB.: TGFß und bFGF vor und nach der Pubertät zu messen, da diese Wachstumsfaktoren in der Lage sind, die Spätdifferenzierung zu inhibieren (Böhme et al., 1995). Da die alkalische Phosphatase und Mineralisation nur nach der Pubertät auftritt, sollte der Zusammenhang zwischen den Sexualhormonen und der Spätdifferenzierung näher untersucht werden.
Bei der serumfreien Kultivierung der Chondrozyten des Rippenknorpels in Agarose- Kultur haben wir festgestellt, daß 50ng/ml Thyroxin, l00ng/ml Insulin und l00ng/ml IGFl keine terminale Differenzierung einleitet. Bei sternalen Hühnerchondrozyten onnte dieses Hormon allerdings eine Spätdifferenzierung induzieren (Böhme et al., 1992). Des weiteren haben wir feststellen können, daß sowohl die C-terminale als auch N-terminale Domäne des Parathormons die terminale Differenzierung von humanen kostalen Chondrozyten einleitet.
Die C-terminale Domäne induziert in serumfreier Zellkultur die Kollagen X-Synthese nach einem Tag und eine erhöhte alkalische Phosphatase-Aktivität nach 13 Tagen. Deshalb könnte man vermuten, daß es einen Inhibitor gibt, der die alkalische Phosphatase-Aktivität blockiert und mit der Zeit nicht mehr exprimiert wird..
Bei der Kultivierung mit verschiedenen Konzentration von FKS wurde Proliferation der kostalen Chondrozyten, Vergrößerung der Zellen, alkalische Phosphatase-Synthese und Kollagen X-Synthese nur durch 10% FKS induziert. Da alkalische Phosphatase bei der Kultivierung mit 10% FKS in drei Tagen festzustellen ist, gehen wir davon aus, daß Negativkontrolle auf die alkalischen Phosphatase-Aktivität vermutlich durch Serumfaktoren aufgehoben wird. Es ist nicht ausgeschlossen, daß weitere Faktoren des FKS bei der Spätdifferenzierung eine Rolle spielen.
Es ist zu bemerken, daß die C-terminale Domäne des Parathormons im Gegensatz zu 10% FKS keine Proliferation und Vergrößerung der Chondrozyten induziert. Das bedeutet, daß Spätdifferenzierung der kostalen Chondrozyten in serumfreie Zellkultur durch Cterminale Domäne von PTH induziert wird (da die Zellen ALP und Kollagen X synthetisieren), ohne daß die Zellen größer werden und proliferieren. Bei der Zugabe von 1% FKS oder Insulin oder IGF1 in Zellkultur wurde festgestellt, daß das Volumen der Zellen zunimmt, ohne daß die Zellen Kollagen X und alkalische Phosphatase synthetisieren.

So vermuten wir, daß Proliferation und Vergrößerung der Zellen keine Merkmale der Spätdifferenzierung der kostalen Chondrozyten sind.
Wir haben bei elektronenmikroskopischen Untersuchungen beobachtet, daß Rippenknorpel nach der Pubertät nur teilweise ossifiziert. Es muß eine Negativkontrolle der endchondralen Ossifikation auf sehr späten Differenzierungsstadien geben. Diese Mechanismen verzögern die Ossifikation von Rippen über sehr lange Zeiträume, obwohl Hypertrophie nach dem Kriterium Kollagen X-Synthese im 5-jährigen Kind bereits vorliegt.

Zinkmangel in Trichterbrustchondrozyten Anhand der laborchemischen Analyse konnte eine „Zinkverarmung” und ein signifikanter Anstieg von Kalzium und Magnesium im brustwanddeformicrenden Rippenknorpel nachgewiesen werden. Elektronenmikroskopische Untersuchungen zeigen die vergrößerten Golgi-Apparate und das vermehrte endoplasmatische Retiku-lum, die eine erhöhte Stoffwechselleistung der Chondrozyten bedeuten (Habilitationsschrift, Dr. Rupprecht Universität Erlangen 1994). Jedoch zeigt sich im extrazellulären Raum eine irreguläre Struktur der Kollagenfibrillen, so daß von einer Störung in der Fibrillenbildung ausgegangen werden muß. Im Rippenknorpelgewebe junger Menschen sind die Fibrillen rundlich mit einem sehr einheitlichen Durchmesser von 17-20 nm zu finden. Rippenknorpel der Trichterbrustpatienten zeigen aber breite dünne Fibrillen so gennante „Amianthoidfibrillen” oder auch „Asbestfasern” (Habilitationsschrift, Dr. Rupprecht Universität Erlangen 1994). Solche Fibrillen treten auch bei Alterung des Rippenknorpels auf (Mallinger und Stockinger, 1988). Deswegen betrachtet man die Trichterbrustkrankheit als Voralterung des Rippenknorpels. Chun-lin et al., 1995 haben festgestellt, daß teilweise prozessiertes Prokollagen II (pN-Kollagen II) in einem Gemisch mit Kollagen II bei der Fibrillogenese die breiten dünnen Fibrillen verursachen. Der gleiche Phänomen haben Holmes et al., 1991 bei der Fibrillogenese eines Gemisches von Kollagen I und pNKollagen I gefunden.
Deswegen haben wir die Prozessierung von Prokollagen II untersucht. Wir haben die Aktivität der Prokollagen-N-Protease in Zellkultur der kostalen Chondrozyten verfolgt.
Dabei haben wir eine Verstärkung der Prozessierung des Prokollagens II durch Zinkzugabe (15mM ZnSO4) festgestellt. Dieses Ergebnis war bei den kostalen Chondrozyten normaler Probanden nicht zu finden. Außerdem haben wir die Zinkkonzentration in kostalen Chondrozyten von Patienten mit Brustwanddeformitäten und normalen Spendern laborchemisch durch Inductiely Coupled Plasma-Mass Spec-trometry (ICP-MS) gemessen.
Anhand der Untersuchung konnte eine „Zinkverarmung” und ein signifikanter Anstieg von Calcium in Chondrozyten bei Trichterbrustdeformitäten nachgewiesen werden. Diese Befunde scheinen eine mangelhafte Aktivität der Prokollagen-N-Protease zu belegen. Diese mangelhafte Aktivität des Enzymes konnte entweder durch die Verarmung der Zinkkonzentration in Chondrozyten von Brustwanddeformitäten oder andere Störung der Prokollagen-N-Protease (z.B die mangelhafte Bindung von Zink an Prokollagen-NProtease), erkälert werden. Die mangelhafte Aktivität der Prokollagen-N-Protease führt zu einer mangelhaften Prozessierung von Prokollagen II und somit zur Bildung von breiten und dünnen Fibrillen (Amianthoidfibrillen), welche zur Bildung „minderwertigen” Knorpels führt. Dieser kann den mechanischen Belastungen bei der In- und Expiration weniger standhalten und führt so zur einer Brustwanddeformitäten. In einer tierexperimentellen Studie konnte bei schwangeren Ratten mit Zinkmangel vergleichbare morphologische Befunde bei deren Jungen im Rippenknorpel nachgewiesen werden (Habilitationsarbeit von Dr. Rupprecht Uni. Erlangen 1994).
Beim Zinkmangel in Chondrozyten von Brustwanddeformitäten kann die Speicherung
von Zink, der Transport von Zink in extrazellulärer Matrix oder die intrazelluläre Aufnahme von Zink gestört sein.
Zinkionen werden von Trichterbrustchondrozyten-Kulturen intrazellulär aufgenommen und verstärken über die Prokollagen-N-Protease die Prozessierung von Prokollagen II in der extrazellulären Matrix. Desweiteren können Zinkionen bei diesen Kulturen mindestens bis 20 Tage gespeichert werden.

Bei den Gewebeproben des Rippenknorpels von Trichterbrustpatienten wurden die Zinkionen aber selbst nach 10 Tagen nicht intrazellulär in die Chondrozyten aufgen-nomen.
Für dieses Phänomen sind zwei Gründe denkbar:
a) freie Zinkionen sind bei den Gewebeproben nicht in der Lage, die extrazelluläre Matrix zu passieren, und/oder von Trichterbrustchondrozyten im Gewebe aufgenommen zu werden, sondern benötigen dafür ein Transportprotein.
b) Es gibt Liganden in der extrazelluären Matrix des Trichterbrustknorpel, die Zinkionen auffangen und dadurch den Zinktransport verhindern.
Unsere Aussagen über Zinkaufnahme, Zinktransport und Zinkspeicherung gelten für freien Zinkionen unter fest definierten in vitro-Bedingungen.
Die Differenzierung der Osteoblasten-ähnlichen Zellen in dreidimensionaler Matrix Die Osteoblasten-ähnlichen Zellen stammen von primär-mesenchymalen Vorläuferzellen, die als Hilfsmittel für diese Studie eingesetzt wurden. Während der folgenden 2- wöchigen Beobachtung der Monolayer-Kulturen zeigen die Zellen den morphologischen und biochemischen Charakter von Osteoblasten. Die Zellen synthetisieren extrazelluläre Proteine (Kollagen I,V) und alkalische Phosphatase, die für Knochengewebe typisch sind.
Die Produktion dieser Kollagene durch andere knochenbezogene Zellen in vitro wurde in früheren Studien dargestellt (Cohentanugi et al., 1996; Byers et al., 1999; Aubin 1999).
Außerdem produzieren die Zellen auch Kollagen III, welches nicht unbedingt spezifisch für Osteoblasten ist (Van der Rest, 1991). Dieses Protein ist jedoch in spezifischen Knochenbereichen, einschließlich der Kortikalknochen in der Nähe der pe-riostalen Oberfläche immunelektronenmikroskopisch identifiziert worden. Diese Beobachtungen stimmen mit der Aussage überein, daß einige Typen von Osteoblasten noch die Kapazität von mesenchymalen Vorläuferzellen in Bezug auf die Kollagen III-Synthese enthalten. Es
wurde darüber spekuliert, daß die Osteoblasten-ähnlichen Zellen ähnlich wie die spezialisierten Osteoblasten Varianten sind, welche in vivo in der Nähe von Kortikal- Knochen-Oberflächen vorliegen. Solche Zellen, die sich in tieferen Zonen befinden, weisen keine Fähigkeit zur Kollagen III -Synthese auf. Jedoch liefert die Umgebung in unserer Monolayer-Kultur keine Hinweise auf einen Fortschritt für eine Weiterdifferenzierung von Osteoblasten-ähnlichen Zellen. Aber es stabilisiert die Differenzierung von mesenchymalen Vorläuferzellen.
Frühere Studien zeigen klar, daß die Zellen von Hühner-Embryonen-Kalvaria in Chondrozyten differenziert werden können (Wong und Tuan 1995; Stringa und Tuan 1996).
Dieses chondrogene Potential besteht unter bestimmten Bedingungen, wie z.B. einer Umgebung mit wenig Kalzium (Jacenko und Tuan, 1995). Zusätzlich zu der Beobachtung der Embryonen-Kalvaria, welche ein pränatales System darstellt, stellen die aus dem Periost stammenden Osteoblasten-ähnlichen Zellen, die in dieser Arbeit verwendet wurden, einen Fall von chondrogenem Potential in vitro in einem postnatalen System dar.
Die Differenzierung der Chondrozyten ist abhängig von den strukturellen Eigenschaften der stationären Umgebung (Zell-Matix-Kontakte). Zellen in einer nicht-adhäsive Umgebung (Agarose-Gele), verhalten sich phänotypisch und biochemisch anderes als in einem adhäsiven Zustand (Kollagen I-Gel oder Monolayer-Kultur). Die Zell-Matrix- Wechselwirkung und die Bildung von geeigneten Matrix-Rezeptoren bestimmen die
Richtung der Differenzierungen.
Nach Überführung in Agarose-Kulturen verändern die Osteoblasten-ähnliche Zellen radikal ihren Phänotyp zu demjenigen von Chondrozyten. Sie nehmen eine runde Gestalt und andere ultrastrukturelle Merkmale von Knorpelzellen an und synthetisieren Kollagen II, aber nicht die Kollagene I und V, die typisch für die Osteoblasten-ähnliche Zellen sind. Die Zellen produzieren weder Kollagen X noch alkalische Phosphatase. Sie haben jedoch den Phänotyp von Chondrozyten in frühen Stadien der Reifung (Szüts u.a., 1998). Die Abschaltung der alkalischen Phosphatase-Synthese könnte sofort nach der Ablösung von Zellen stattfinden.
Die Osteoblasten-ähnlichen Zellen in Monolayer-Kulturen synthetisieren Kollagene I, V, III und alkalische Phosphatase. Die Zellen proliferieren und sehen wie die Osteoblasten aus.
Die Osteoblasten-ähnlichen Zellen lassen sich auch in Kollagcn I-Gel kultivieren. Die Zellen bleiben Osteoblasten-ähnlich und produzieren Kollagen I und V, alkalische Phosphatase und proliferieren radikal. Bemerkenswerterweise produzieren die Zellen kein Kollagen III, was als Zeichen für die  eiterdifferenzierung der Osteoblasten-ähnlichen Zellen im Kollagen I-Gel gerwertet werden kann. Wir vermuten, daß die Rezeptoren von Kollagen I eine Rolle bei der Abschaltung der Kollagen III-Synthese spielen. Die Zellen in 5 Diskussion 100 Kollagen I-Gel zeigen die typischen Eigenschaften von Osteo-blasten in tieferen Zonen von Kortikal-Knochen.
Zusammengefaßt, postulieren wir schließlich, daß die Kommunikation zwischen Zellen und extrazellulärer Umgebung eine große Rolle für die Bestimmung des Knochenzellen- Phänotyps und die Differenzierung von Zellen spielt. Zusätzlich und Gegensatz zu anderen dreidimensionalen Kultur-Systemen (Attawia u.a. 1995; Laurencin u.a.1996; Saad u.a.1998; El-Ghannam u.a.1997; Schoeters u.a. 1992; Casser-Bette u.a. 1990; Tsuang u.a. 1997), erlaubt unsere Kultur die lichtmikroskopische Beobachtung von Zellen während der Kultivierungs-Periode. Daher kann diese Kulturmethode als sinnvolles 3-D-Modell für das Studium von Differenzierungs-Potentialen der osteogenen Zellen dienen.

Jul 9th, 2009

Ergebnise

Posted by admin @ 12:20 pm

4. Ergebnise

4.1 Die Spätdifferenzierung der humanen Chondrozyten im Rippenknorpel

Gegenstand unserer Untersuchung waren die Präparation und die Kultivierung von humanen Chondrozyten in Agarose, die biochemischen und morphologischen Untersuchungen der humanen Chondrozyten und der Vergleich der humanen Chondrozyten mit den Hühnerchondrozyten, die aus dem 17d-embrynalen Sternum isoliert wurden. Am Anfang traten die im folgenden dargestellten Probleme auf, die zum größten Teil gelöst werden konnten.

4.1.1. Die Beseitigung der Probleme

4.1.1.1 Die Beschaffung des humanen Knorpels

Durch das Institut für Rechtsmedizin, das Institut für Anatomie und die Klinik und Poliklinik für Kinder- und Neugeborenenchirurgie der medizinischen Fakultät der Westfälischen Wilhelms-Universität Münster wurde uns humaner Knorpel zur Verfügung gestellt. Wir waren mit diesen Einrichtungen so organisiert, daß wir den Knorpel unmittelbar nach der Entnahme erhielten.

4.1.1.2 Die Präparation

Anfangs haben wir zwei Arten von mikrobiologischen Kontamination bei den Knorpelproben festgestellt, erstens eine oberflächliche Kontamination, die durch Sezernierung und Präparierung des Knorpels vorkommt, zweitens eine Kontamination der Chondrozyten selbst. Um eine oberflächliche Kontamination, auszuschließen bzw. zu beseitigen, haben wir folgende Maßnahmen ergriffen:

1) Bei der Entnahme des Knorpels und seiner weiteren Bearbeitung sollte möglichst steril
gearbeitet werden. So haben wir beispielsweise die verwendeten Geräte und das Entnahmegut ständig mit 70% Alkohol besprüht.
2) Nach der Entnahme der Gewebe ist der Knorpel von anderen Geweben bedeckt. Um die oberflächliche Kontamination zu beseitigen legten wir die Probe daher für 10 Minuten in 70% Alkohol und wuschen sie danach zweimal gründlich mit Krebspuffer.Die Kontamination der Chondrozyten konnte nicht beseitigt werden, so daß diese Proben für die Studie unbrauchbar waren.
Die Effiziens der Verdauung des Knorpels und die Zellausbeute sind von den folgenden Faktoren abhängig:


1. vom Alter der Patienten
2. von der Dicke der Schnitte
3. von der Menge der Kollagenase B

Daher sollte nur Knorpel von weniger als 10 Jahre alten Patienten oder Probanden verwendet werden, sollte der Knorpel möglichst dünn geschnitten werden, und betrug die Konzentration von Kollagenase B mehr als 1,5 mg/ml.

4.1.1.3 Die Zellzahl

Wir haben Knorpel von Patienten aus verschiedenen Altersgruppen erhalten. Wie die Daten der Tabelle l zeigen, konnten aus den Knorpeln älterer Patienten in Bezug auf die Masse der Probe weniger Chondrozyten isoliert werden.
Zu Beginn wurde die Durchführung dadurch behindert, daß nicht genug Chondrozyten aus dem Gewebe zu isolieren waren. Aus diesem Grund gab es einige Experimente, deren Ergebnisse in der Tabelle l aufgeführt sind. Um eine vernünftige Methode zur Isolierung der Chondrozyten zu finden, haben wir zuerst von einem Entnahmegut je 2 Gramm Knorpel genommen und die Chondrozyten danach unterschiedlich isoliert. Die effektivste Vorgehensweise ist im Abschnitt „Material und Methode” beschrieben.

Alter Die Anzahl der Zellen /2g Gewebe
3 Jahre 8,000,000
5 Jahre 8,500,000
8 Jahre 6,200,000
10 Jahre 5,600,000
14 Jahre 3,000,000
16 Jahre 1,500,000
17 Jahre 1,500,000
21 Jahre 1,000,000
Tabelle 1: Die Anzahl / 2g Rippenknorpel der isolierten Zellen unterschiedlich alter Patienten

4.1.1.4 Die Vitalität

Während wir die Chondrozyten vom fötalen epophysären Knorpel kultiviert haben, haben wir eine verminderte Vitalität festgestellt. Daher haben wir schließlich nur noch Rippenknorpel verwendet.

4.1.1.5 Antikörper gegen Kollagen X

Wir verwendeten ein lyophylisiertes Kaninchenantiserum gegen recombinantes humanes Kollagen X, das wir von Prof. von der Mark erhalten haben und im Immunblot in der Konzentration von 0,33 g/ml – l  g/ml eingesetzt haben. Während der Arbeit haben wir festgestellt, daß dieser Antikörper außerdem noch mit Kollagen IX reagiert. Daher haben wir, wie im Abschnitt „Material und Methode” beschrieben, die Kollagene nach der Pepsin4 verdauung reduziert und alkyliert. Auf diese Weise ließ sich die gegen Kollagen X gerichtete Antwort des Antiserums spezifisch identifizieren und im Immunblot von derjenigen gegen Kollagen IX unterscheiden.

4.1.2 Untersuchung der terminalen Differenzierung in humanen Chondrozyten aus Rippenknorpel

4.1.2.1 Induktion der terminalen humanen Chondrozytendifferenzierung durch Serumkomponenten

i) Einfluß unterschiedlicher Konzentrationen von FKS (Fötales Kälberserum)
Bruckner et al, (1989) und Tschan et al, (1990) wiesen nach, daß 10 % FKS die volle Kaskade der Spätdifferenzierung bei Hühnerchondrozyten induziert, d. h. die Zellen proliferieren zuerst, das Volumen nimmt zu, und schließlich wird Kollagen X synthetisiert.
Daher stellte sich zunächst die Frage, ob dies auch bei humanen Chondrozyten von Rippenknorpel zu beobachten ist und ob 0.1 % oder l % FKS im Medium ebenfalls ausreichend für die Induktion der Differenzierung sind. Die Proliferation der Chondrozyten konnte durch Zählen einzelner Zellen auf repräsentativen Fotografien bestimmt werden, die nach verschiedenen Zeitintervallen von einer identischen Stelle der Zellkulturschalen gemacht wurden. Wie die Abbildung 4.12 zeigt, ist diese Methode am Anfang der Kulturperiode (bis 28 Tage) gut anwendbar, wogegen es später (nach 4-5 Wochen) zur Zellaggregation kommt, was die Zählung einzelner Zellen schwierig macht. Die Kollagensynthese wurde qualitativ nach der Pepsinverdauung mit anschließender Kollagenextraktion aus der Zell-Agaroseschicht mit SDS-PAGE bestimmt. Zur genaueren Bestimmung von Kollagen X wurde zusätzlich ein Immunblot mit lyophylisiertem Anti.
recomb. Human Kollagen X Serum durchgeführt. Dieses Kollagen X, das Auftretenden der Aktivität von alkalischer Phosphatase und die Induktion der Proliferation, gekoppelt mit einer erhöhten Matrixproduktion, gelten als biochemische Marker der terminalen Chondrozytendifferenzierung. Bei Kultivierung der humanen Chondrozyten mit 10 % FKS nahm neben der erhöhten Proliferation (Abb.4.14) und der gesteigerten Kollagensynthese (Abb.4.21) auch die Größe der Zellen zu (Abb.4.12M-P). Übereinstimmend mit dieser morphologisch sichtbaren Vergrößerung des Zellvolumens wurde unter den pepsinresistenten Kollagenen auch Kollagen X gefunden (Abb.4.17). Zusätzlich war Aktivität der alkalischen Phosphatase nachweisbar (Abb.4.16). Unter dem Elektronenmikroskop konnte das Abschnüren von Matrixvesikeln von den Chondrozyten im Extrazellulärraum beobachtet werden (Abb.4.23). Die anschließende Mineralisierung dieser Matrixvesikel wurde durch energiegefilterte transmissionelektronenmikroskopische Feinbereichs-Beugungsaufnahmen (SAESD) als apatitisches Mineral nachgewiesen. Dabei wurden die charakteristischen Gitternetzebenenabstände (d-Werte) des Hydroxylapatits (d002 =0.344 nm, d300=0.273 nm, etc.) mit den d-Werten von Hydroxylapatit aus der Röntgenbeugungskartei (ASTM-932) verglichen und identifiziert (Abb. 4.23b,c).
Wie in Abb. 4.12 zu sehen ist, induzieren Konzentrationen von 0,1 % und l % FKS im Gegensatz zu einem Gehalt von 10 % FKS im Medium nicht die Proliferation. 1% FKS stimuliert jedoch die Synthese von Kollagen II und XI pro Schale (Abb. 4.21). Die Zellgröße (Abb. 4.12 I-L) nimmt nur leicht im Vergleich zur serumfreien Kontrolle (Abb. 4.12 A-D) zu.
Hinsichtlich der anderen Marker ist weder Kollagen X (Abb.4.17) noch die alkalische Phosphatase-Aktivität (Abb.4.16) feststellbar. Wir gehen davon aus, daß bei einer Konzentration von 0,1 % und l % FKS nicht genügend Faktoren enthalten sind, um die terminale Differenzierung auszulösen. Um zu klären, welche Komponenten im fötalen Kälberserum für das Auftreten der terminalen Chondrozytendifferenzierung verantwortlich sind, mußte nun die Reaktion der Knorpelzellen auf die einzelnen Bestandteile des FKS betrachtet werden. Um diese Komponenten zu gewinnen, konnte entweder das Serum aufgetrennt oder auf Faktoren, deren Vorkommen im FKS bekannt ist, zurückgegriffen werden.
Für unsere Untersuchungen entschieden wir uns für die letztere Möglichkeit.
ii) Regulation der Chondrozytendifferenzierung durch isolierte Faktoren in serumfreier Zellkultur
Um die Regulation der terminalen Differenzierung zu studieren, ist es unerläßlich, in serumfreien Zellkulturen zu arbeiten. Durch das in unserem Labor erarbeitete serumfreien Kultursystem für Hühnerchondrozyten, in dem durch Zugabe von Antioxidantien (z. B. l mM Cystein) in voll definiertem Medium (DMEM) die Chondrozyten über lange Zeit vital bleiben und das auch auf humane Chondrozyten anwendbar ist, war es möglich, die Chondrozyten serumfrei zu kultivieren und die Effekte einzelner Signalmoleküle auf die Synthese des Kollagen X ohne Überlagerung mit anderen Serumfaktoren hin zu untersuchen.
Als wichtigste Wachstumsfaktoren, die getestet wurden, sind Thyroxin, Insulin, insulinähnliche Wachstum-Faktoren (IGF) und das C- und N-terminale Segment (#1-34 und #53-84) des Parathormons (PTH) zu nennen. IGF I ist seit 1957 (Salmon & Daughaday) als Sulfatierungsfaktor im Serum bekannt, Insulin gilt als wichtiger anaboler Stimulus im Fötus (De Pablo et al., 1985; Girbau et al., 1988), und Schilddrüsenhormon (Thyroxin, Trijodthyronin) ist für Wachstum und Entwicklung des Skelettes unentbehrlich (Lebvitz & Burch, 1975). In serumfreier Organkultur konnte außerdem gezeigt werden, daß Thyroxin am Reifungsprozeß der Chondrozyten beteiligt ist (Burch & Lebovitz, 1981 & 1982).
In einem Gemisch der gesamten Chondrozyten eines Sternums eines 17-tägigen Hühnerembryos konnte die terminale Differenzierung durch Thyroxin eingeleitet werden (Böhme et al, 1992). In unserer Agarosekultur stimulierten IGF I (100 ng/ml), Insulin (100 ng/ml) und Thyroxin (50 ng/ml) die terminale Differenzierung der Chondrozyten vom Rippenknorpel nicht.
Es sind weder Kollagen X (Abb.4.17) und alkalische Phosphatase (Abb.4.20) noch Proliferation (Abb.4.15) und Mineralisation nachweisbar gewesen, auch nicht nach längerer Kultivierungszeit. Allerdings fanden wir eine Stimulation der Synthese der Kollagene II und XI (Abb.4.21).
In vivo führt die Injektion von Parathyroidhormon (PTH) zu einer Stimulation des Knorpelwachstums (Havelken et al., 1979; Gunnes & Hock, 1984). Bereits innerhalb der Nebenschilddrüse, wie auch extraglandulär (u. a. Leber, Niere), wird PTH einem partiellen Fragmentierungsprozeß unterzogen, welcher hauptsächlich zur Entstehung dreier Fragmente (#) führt: #1-34, #28-48, #53-84 (die Zahlen entsprechen den Sequenzabschnitten des PTHMoleküls).
Neuere Studien belegen multiple Wirkspektren von PTH an Aorta, Gehirn, Haut, glatter Muskulatur, Leber, Knorpel und anderen Organen durch die zusätzliche Bioaktivität der ursprünglich als inaktiv geltenden „Spaltprodukte #28-48 und #53-84. Allerdings herrscht über die Struktur-Funktionsweise dieser mittleren Terminale und der C-Terminale Unklarheit.
Da zudem die PTH-Wirkungen nicht nur durch das „klassische” N-tereminale Fragment #1- 34 vermittelt wird, sondern sich das Spektrum durch die Aktivitäten der anderen PTHSpaltprodukte (#28-48, #53-84) erweitert, sollte die vorliegende Untersuchung als biochemische Vergleichsanalyse der bisher kaum untersuchten Wirkungen der Fragmente am Knorpel dienen. Der Nachweis wurde mit serumfreien Zellkultur-Studien mit humanen Chondrozyten aus Rippenknorpel auf der Ebene der Proliferation, der Kollagensynthese und der Aktivität der alkalischen Phosphatase geführt.
In Kulturen, die eine Konzentration von 10-8 M PTH-Spaltprodukte (#1-34 und #53- 84) enthielten, zeigte sich nach 21 Tagen keine Proliferation (Abb. 4.13). In Kulturen mit einer Zelldichte von 1,5 x 106 Zellen/ml wurde nach 48-stundiger Behandlung mit 10-8 M PTH (1-34) oder 10-8 M PTH (53-84) die Synthese von Kollagen X beobachtet (Abb.4.22).
Ähnlich wurde nach Gabe von PTH (53-84) die Produktion der ALP-Aktivität nach 12 Tagen nachweisbar. Diese erhöhte sich bis zu Tag 21 (4.20). Die alkalische Phosphatase wurde nach 12 Tagen nur durch das C-Terminal des PTH induziert. Bis zum 21. Tag erhöhte sich die Aktivität der alkalischen Phosphatase (Abb.4.20).

4.1.3 Gewebeuntersuchungen

4.1.3.1 Mineralisierung, alkalische Phosphatase und Kollagen

X als Marker für die Spätdifferenzierung in humanem Rippenknorpel Humaner Rippenknorpel, d. h. der knorpelige Anteil der Rippen zwischen knöchernem Teil und Sternum, bleibt bis zur Pubertät Knorpelgewebe. Obwohl er als hyaliner Knorpel bezeichnet wird, ist er vaskularisiert. Bereits postnatal oder spätestens am 17.
Lebenstag ist das Knorpelgewebe von arteriellen und venösen Gefäßen durchzogen. Sie dringen in den Knorpel vom Perichondrium ausgehend zentripetal und sorgen durch mediale Verzweigungen für eine gute Versorgung des Gewebes mit Blut. Durch zunehmendes Dickenwachstum werden die zentral liegenden Chondrozyten durch Diffusion nicht mehr ausreichend ernährt, weshalb diese Zellen vermutlich angiogene Faktoren freisetzen, die die Vaskularisierung induzieren, damit ihre Versorgung wieder gewährleistet ist (N. Nuss, 1990). Im Rahmen der normalen Alterung setzt am Ende der Pubertät teilweise eine Mineralisation und Ossifikation des Rippenknorpels ein (Helly, 1929; Fischer, 1954). Diese Osteogenese kann auch als degenerativer Prozeß betrachtet werden, der eine Folge mangelhafter Versorgung der zentral liegenden Chondrozyten sein könnte (Fischer, 1954; Sames, 1977; Sames & Wöbet, 1980). Nach histochemischen Untersuchungen des Knorpels der ersten Rippe von Kindern und Erwachsenen wurde kein Kollagen X, nach der Pubertät jedoch alkalische Phosphatase nachgewiesen (Classen et al., 1995).
Um die Spätdifferenzierung im Rippenknorpel festzustellen, haben wir Rippenknorpel extrahiert und Kollagen X und alkalische Phosphatase-Aktivität biochemisch identifiziert.
Dazu wurde Kollagen X mit 4.5 M Guanidin / HCl (pH 7,4) aus dem Knorpelgewebe isoliert. Im Immunblot mit Kaninchenantiserum gegen Kollagen X wurde dann Kollagen X mit einem Molekulargewicht von 52 kDa in verschieden alten Knorpeln nachgewiesen (Abb. 4.19). Nachdem wir Kollagen X in den Knorpeln identifiziert hatten, erwarteten wir dort ebenfalls alkalische Phosphatase zu finden. Die aus dem Gewebe extrahierte alkalische Phosphatase wurde mit p-Nitrophenolphosphat für 30 min. bei 37°C inkubiert und die Extinktion bei 405 nm photometrisch bestimmt. So konnten wir im Knorpelgewebe von Spendern vor der Pubertät keine alkalische Phosphatase nachweisen. Bei 17-, 27-, 32-, 36-, 37- und 52-jährigen Spendern war eine Aktivität der alkalischen Phosphatase messbar (Abb. 4.18). Wir vermuten daher, daß die alkalische Phosphatase erst nach der Pubertät im Knorpelgewebe synthetisiert wird. Da die alkalische Phosphatase und Kollagen X Marker für die terminale Differenzierung sind, haben wir angenommen, daß sich nach der Pubertät auch eine Mineralisation des Knorpels zeigt. Glutaraldehydfixiertes Gewebe wurde im Elektronenmikroskop untersucht. In Geweben, in denen die alkalische Phosphatase nachweisbar war, konnte auch eine Mineralisierung festgestellt werden (Abb. 4.24a).

4.1.3.2 Ossifikation in humanem Rippenknorpel

Wie beschrieben haben wir Mineralisierung, ALP-Aktivität und Kollagen X als Marker für die Spätdifferenzierung in humanem Rippenknorpel nach der Pubertät festgestellt.
Daher erwarteten wir, daß dieses Gewebe ossifiziert wird. Bei einem 37-jährigen Mann konnten wir daraufhin eine Ossifikation in EM-Schnitten beobachten (Abb.4.24b). Aufgrund dieser Feststellung gehen wir davon aus, daß der humane Rippenknorpel nur teilweise ossifiziert.
Diese Vermutung ist konsistent mit der Folgerungen des Arbeitens von Koebke und Saternus, 1982 & 1985).

4.1.4 Abbau von Kollagen X

Wie in der Einleitung bereits erwähnt, besitzt Kollagen X zwei Imperfektionen der tripelhelikalen Sequenz mit der Aminosäureabfolge (Gly-X-Y-Z-A), die durch die Kollagenase abgespalten werden (Welgus et al., 1990). Im Gegensatz zu den durch die Kollagenase abgespaltenen Fragmenten der übrigen Kollagentypen wird das 32-KDa- Fragment des Kollagens X bei 37°C nicht sofort weiter abgebaut (Gadher et al., 1990).
Nach 45 Tagen konnte dieses Fragment auch in unseren Kulturen nachgewiesen werden (Abb.4.17).

Abb.4.12: Die Entwicklung von Rippenknorpelchondrozyten in Vitro Phasenkontrastlichtmikroskopische Aufnahme von Zellen unter Zugabe von 0,l %igen KKS (E-H), l %igen FKS (I-L), 10 %igen FKS (M-P). Kontrollzellen (A-D) wurden nur mit DMEM kultiviert.
Die Aufnahmen wurden nach 7 Tagen (A,E,I,M), 14 Tagen (B,F,J,N), 21 Tagen (C,G,K,O), und 28 Tagen (D,H,L,P) wiederholt Die identische Stelle der Zellkulturschalen wurde durch ein Phasenkontrastmikroskop vergrößert und fotografiert. (Zeiss Axiovert 10) Es werden repräsentative Stellen gezeigt.

Abb.4.13: Die Entwicklung von Chondrozyten des Rippenknorpels in in Vitro Phasenkontrast.
Lichtmikroskopische Aufnahme von Rippenchondrozyten in der Agarosekultur unter Zugabe von 100 ng/ml IGF1 (E-H), 100 ng/ml Insulin (I-L) 50 ng/ml Thyroxin (M-P), C-Terminal von PTH (Q-T)und N-Terminal von PTH (U-X).
Kontrollzellen (A-D) wurden nur mit DM KM kultiviert.
Die Aufnahmen wurden nach 7 Tagen (A,E,I,M,Q,U), 14 Tagen (B,F,J,N,R,V), 21 Tagen (C,G,K,O,S,W), 28 Tagen (D,H,L,P,T,X) in Kultur genommen.
Die identische Stelle der Zellkulturschalen wurde durch ein Phasenkontrastmikroskop vergrößert und fotografiert (Zeiss Axiovert 10). Es werden repräsentative Stellen gezeigt.

4. Proliferation der Chondrozyten in serumhaltiger Zellkultur Tage in Kultur Abb.4.14: Zellproliferation unter der Wirkung von DMEM und verschiedenen Konzentration von FKS (alle oben beschrieben).
Die Zunahme der Zellzahl entspricht dem Bruchteil der Zellen, die auf einem Feld in der Kulturschale nach den angegebenen Kulturzeiten gezählt wurden, relativ zu den am ersten Kulturtag an derselben Stelle beobachteten.
Proliferation der Chonldrozyten in serumfreier Zellkultur Tage in Kultur Abb.4.15: Zellproliferation unter Wirkung von DMEM und verschiedenen Serumfaktoren (alle oben beschrieben).
Die Zunahme der Zellzahl entspricht dem Bruchteil der Zellen, die auf einem Feld in der Kulturschale nach den angegebenen Kulturzeiten gezählt wurden, relativ zu dem am ersten Kulturtag an derselben Stelle beobachteten.

Tage in Kultur Abb. 4.16: Die Aktivität der alkalischen Phosphatase im Kulturmedium der Rippenknorpelchondrozyten, die mit DMEM Medium und verschiedenen Konzentrationen von FKS kultiviert wurden.
Die Aktivität wurde anhand des Umsatzes des synthetischen Substrats (P Nitrphnol) photometrisch bestimmt.
Abb. 4.17 Immunblot pepsinierter und reduzierter Kollagene aus Chondro-zytenkulturen von Rippenknorpel, die in Agarose in 21 Tagen mit DMEM (Bahn 1), 0,1% FKS (Bahn 2), 1% FKS (Bahn 3), 100 ng/ml IGF, (Bahn 4), 100 ng/ml INS (Bahn 5), 50 ng/ml Thyroxin (Bahn 6), 10% FKS (Bahn 7) und in 45 Tagen mit 10% FKS (Bahn 8) kultiviert wurden.

A.P. Aktivität im Gewebe 0 3 8 11 17 27 32 36 37 52 Alter / Jahre
Abb.4.18: Die Aktivität der alkalischen Phosphatase wurde nach Extraktion der Gewebe (Rippenknorpel) mit Triton durch die Bildung von Nitrophenol bestimmt.
Abb.4.19 Immunblot zum Nachweis von Kollagen Typ X nach Extraktion der Kollagene aus Rippenknorpel (20 mg) in 4,5 M Guanidin. Es handelt sich hierbei um Gewebeproben von 3 Jahre (Bahn 1), 11 Jahre (Bahn 2), 17 Jahre (Bahn 3) und 37 Jahre (Bahn 4) alten männlichen Probanden.  Kollagen Typ X (52 kDa)

A.P. Aktivität/ Schale Tage in Kultur Abb. 4.20: Die Aktivität der alkalischen Phosphatase im Kulturmedium der Rippenchondrozyten, die mit DMEM Medium und verschiedenen Serumfaktoren (oben alle beschrieben) kultiviert wurden.
Die Aktivität wurde anhand des Umsatzes des synthetischen Substrats P-Nitrophenolat gemessen. Die Konzentration des gelb gefärbten Reaktionsprodukts (P-Nitrophenolat) wurde photometrisch bestimmt.

Abb. 4.21: Das Gel (Bahne 1-7) zeigt die Coomasie-Blau-Färbung der synthetisierten Pepsin-resistenten Kollagene, die durch SDS-PAGE (4,5-15
%) aufgetrennt wurden. Die Zellen wurden in DMEM (Bahn 1), 0,1 % FKS (Bahn 2), 1% FKS (Bahn 3), DMEM+100ng/ml IGF1 (Bahn 4),
DMEM+100ng/ml INS (Bahn 5), DMEM+50ng/ml Thyroxin (Bahn 6) und 10% FKS (Bahn 7) bei einer Zelldichte von 1,5 Mio Zellen /ml in Agarose
kultiviert.
Abb. 4.22: Immunblot pepsinierter und reduzierter Kollagene aus Chondrozytenkulturen von Rippenknorpel, die in Agarose 48 Stunden mit DMEM (Bahn 1), 10-8 M N-terminales Fragment von PTH (#1-34) (Bahn 2) und 10-8 M C-terminales Fragment von PTH (#53-84) (Bahn 3,4) kultiviert wurden.
4 Ergebnisse 71
(a) M: 44.000 x
(b) M: 12000 x

Abb.4.23 Matrixvesikel-Mineralisierung in humaner Chondrozyten-Kultur

(a) Abschnürung eines MV vom Chondrozyten (zero-loss gefilterte ESI-Aufnahme)
(b) Mineralisierung eines MV (zero-loss gefilterte ESI-Aufnahme)
(c) Feinbereichsbeugung des mlnerallsierten MV (zero-loss gefilterte ESD-Aufnahme)

Die elektronenmikroskopischen Aufnahme wurden freundlicherweise von Dr. U. Plate zur Verfugügung gestellt.

Abb. 4.24: Mineralisierung und Ossifikation von humanem Rippenknorpel
(a) mineralisierter MV im Rippenknorpel
(b) Ossifikation im Rippenknorpel

Die elektronenmikroskopischen Aufnahme wurden freundlicherweise von Dr. U. Plate zur Verfügung
gestellt.

4.2 Zinkmangel in Trichterbrustchondrozyten

Funktion, Transport und Speicherung von Zink wurden bereits in der Einleitung ausführlich besprochen. Wie beschrieben, ist die Prokollagen-N-Protease ein Metalloenzym, das wahrscheinlich im endoplasmatischen Retikulum posttranslational modifiziert und danach an die Zelloberfläche sezerniert wird. Dort spaltet es das aminoterminale Propeptid von Prokollagen ab. Das Ergebnis dieses Prozessierungsschnittes ist die Entstehung von entweder Kollagen II oder pC-Kollagen, das teilweise prozessierte Prokollagen II, welches das C-terminale Propeptid noch enthält.
In der vorliegenden Arbeit haben wir eine Aktivitätsändening der Prokollagen-NProtease in Chondrozyten aus Knorpel von Trichterbrustpatienten verschiedenen Alters in Abhängigkeit von der Zinkkonzentration in der Kulturmedien nachweisen können. Die
Aktivität der Prokollagen-N-Protease wurde durch den Grad der Prozessierung von pNKollagen II bestimmt.

4.2.1 Biochemische Analyse

Als Operationsmaterial von kostaler Knorpel wurde in der Klinik für Kinderchirugie der WWU durchgeführten Korrekturoperationen von Trichterbrustdeformitäten erhalten.
Normales Rippenknorpel von Spendern vergleichbaren Alters stammte aus dem Institut für Rechtsmedizin. Chondrozyten wurden aus Rippenknorpel isoliert und in Agarose
eingebettet. Die Agarosekulturen wurden serumfrei in Medien mit Zink und ohne Zink kultiviert. Nach erfolgter Kultur wurden die Zellen metabolisch mit [14C]-Prolin markiert und die neu produzierten Kollagene durch Elektrophorese und Fluo-rographie quantitativ erfaßt.

4.2.1.1 Nachweis von pN-Kollagen II

Ein Teil der neusynthetisierten Kollagenmoleküle wird n icht in die denovo gebildete
M a t r ix d er C ho nd ro z y ten in Ag a ro s e k u l tur e in ge b a ut un d d if fun d ie rt d e sh a lb in d ie Kulturmedien. Prokollagen II tritt dort unter normalen Umständen als vollständig zu Kollagen II prozessiertes Material auf. In der SDS-Gel-Elektrophorese der radioaktivmarkierten Medienproteine tritt deshalb die al(II)-Kette mit einem Molekulargewicht von 95kDa auf. Ein Teil des Proteins erscheint jedoch als pN-al(II)-Ketten, die eine etwas geringere elektrophoretische Mobilität besitzen und deren Menge davon abhängig, wie stark Prokollagen II durch die Prokollagen-N-Protease prozessiert wird. Chondrozyten von Trichterbrustpatienten wurden in Agarose eingebettet. Nach 20 Tagen in Kultur wurden die Kollagene aus den Medien extrahiert. Danach wurden die Kollagene mit und ohne vom fötalen Kalb stammenden Prokollagen-N-Protease in 50mM Natrium Cacodylat-Puffer pH 7,5 200mM KCl, 2mM CaCl, 2,5 NEM, 0.5mM PMSF, und 0,02% Brij 16 Stunden bei 26 °C inkubiert. Nach 16 Stunden Inkubation wurde die Reaktion mit 50 ml EDTA-Lösung (0,2M EDTA, PH 8, 0,5% SDS, 0,5M DTT) gestoppt und die Kollagene einer SDSGelelektrophorese unterzogen. Wie die Abbildung 4.25 zeigt, verschwand die Bande x oberhalb von Kollagen II durch Inkubation der Kollagene mit der Enzym. Die Bande x (Abb. 4.25) entspricht somit pN-Kollagen II. Durch die Inkubation mit der PN-Peptidase wurde das pN-Kollagen II in Kollagen II prozessiert.
Abb. 4.25: Konversion von pNKollagen durch die Prokollagen- N-Protease. SDS-Gelelektrophorese der Medienproteine mit (+) und ohne (-) vorangegangene Behandlung mit dem Enzym.
Darstellung der Polypeptide: Coomassie-Blau

4.2.1.2 Nachweis des Effekts von Zink auf die Prozessierung von Kollagen II

Zur Darstellung des Effekts von Zinkionen auf die in Agarose kultivierten Trichterbrustchondrozyten diente die Aktivität der Prokollagen-N-Protease. Diese wiederum wurde über den Grad der Prozessierung von Kollagen II ermittelt. Chondrozyten wurden zuerst aus dem Trichterbrustsknorpel isoliert und in Agarose eingebettet. Danach wurden die in der Agarose eingebetteten Chondrozyten mit Zink (DMEM + 15 mmol ZnSO4) und ohne Zink (nur DMEM) serumfrei kultiviert. Das Medium DMEM enthält kein Zink.
Die Kulturen mit und ohne Zink wurden nach 20 Tagen in Kultur mit [14C]-Prolin über 48 Stunden markiert. Die markierten Kollagene der Kulturmedien wurden zur Herstellung eines Fluorogramms verarbeitet.
In der unten stehenden Abbildung des Fluorogramms ist die pN-Kollagen II-Bande oberhalb der Kollagen II-Bande (Bahn l). Durch Zugabe von Zink wurde pN-Kollagen II
verstärkt zu Kollagen II prozessiert (Bahn 2). Dieses Phänomen beweist einen Effekt von Zink auf die Prozessierung von Kollagen II.
Abb. 4.26 zeigt die Verstärkung der Prozessierung von pNKollagen II durch Zugabe von Zink (15 mM ZnSO4) in serumfreien Kulturen (nur mit DMEM). Die Kulturen mit Zink
(DMEM + 15 mM ZnSO4) Bahn (1) und ohne Zink (DMEM) Bahn (2) wurden nach 20 Tagen in Kultur mit [14C]-Prolin während 48 Stunden markiert.
Darstellung der Polypeptide: Fluorogramm Alter: 7 Jahre

4.2.1.3 Die Verstärkung des Effekts von Zink durch 100 ng/ml Insulin

Insulin ist als ein wichtiger anaboler Stimulus in der Fötalentwicklung bekannt (De Pablo et al. 1988; Hill 1978). Es gibt nach unseren heutigen Erkenntnissen keine
Informationen darüber, daß Insulin den Effekt von Zink auf die Prozessierung von Prokollagene verstärkt. Trichterbrustchondrozyten wurden 4 Kulturbedingungen ausgesetzt:
mit Zink (DMEM + 15 mmol ZnSO4), ohne Zink (DMEM),
mit Insulin und Zink (DMEM + 100 ng/ml Insulin + 15 mmol ZnSO4) und Insulin ohne Zink (DMEM + 100 ng/ml Insulin)
Die Kulturen wurden nach 20 Tagen in Kultur mit [14C]-markierten Prolin während 48 Stunden inkubiert und metabolisch die markierten Kollagene im Kulturmedium durch SDSGelelektrophorese und Fluorographie nachgewiesen. Wie die Abbildung 4.27 des Fluorogramms zeigt, wird die Prozessierung von Kollagen II durch Zugabe von Insulin und Zink verstärkt.
Abb. 4.27 zeigt die Verstärkung des Effekts von Zink auf die Prozessierung durch Zugabe von 100 ng/ml Insulin. Die Zellen wurden mit DMEM (Bahn 1), DMEM + 15 mM Zink (Bahn 2), DMEM + 100 ng/ml Insulin (Bahn 3) und DMEM + 100 ng/ml Zink
(Bahn 4) kultiviert und nach 20 Tage mit [14C]- Prolin über 48 Stunden
markiert.
Darstellung der Kollagene: Fluorogramm
Alter: 6 Jahre

4.2.1.4 Vergleich des Effekts von Zink auf Trichterbrustchondrozyten und kostalen

Chondrozyten von normalen Spendern

Wir haben an den Trichterbrustchondrozyten gezeigt, daß Zink einen Effekt auf die
aminoterminale Prozessierung von Prokollagen II hat. Wir nehmen an, daß die
herabgesetzte Prozessierung von pN-Kollagen II entweder mit einem Zinkmangel in den
Trichterbrustchondrozyten oder der ungenügenden Aktivität der Prokollagen-N-Protease in Verbindung steht.
Deswegen haben wir den Effekt von Zink auf kostalen Chondrozyten von normalen
Spendern untersucht. Wir haben die Chondrozyten aus Rippenknorpel eines
vergleichbaralten normalen Spenders (5 Jahre alte Junge) isoliert, in Agarose eingebettet und mit Zink (DMEM + 15 mmol ZnSO4) und ohne Zink (DMEM) kultiviert. Nach 20 Tagen wurden Kulturen mit [I4C]-Prolin während 48 Stunden markiert und die markierten Kollagene zur Herstellung eines Fluorogramms verarbeitet. Wie Abbildung 4.28 zeigt, hat sich die Prozessierung von pN-Kollagen II durch Zugabe von Zink in der Agarosekultur nicht verändert.
Weil die Zugabe von Zink in die Kulturmedien keinen Einfluß auf die Prozessierung
von Prokollagen II hat, können wir schließen, daß gesunde Chondrozyten normaler Spender ausreichend Zink enthalten, um die Produktion von aktiven Enzym auch während der gesamten Kulturzeit zu gewährleisten und Prokollagen-N-Protease in gesunden Chondrozyten normal ist.
Abb. 4.28 zeigt, daß Zink keinen Effekt auf die Prozessierung von Prokollagen II in kostalen Chondrozyten von normalen Spendern hat. Die Zellen wurden mit DMEM (Bahn 1) und DMEM + 15 mM Zink (Bahn 2) kultiviert und nach 20 Tage mit [14C]-Prolin während 48 Stunden markiert.
Darstellung der Kollagene: Fluorogramm
Alter: 5

4.2.2 Laborchemische Analyse

Zwei Untersuchungskollektive sind gebildet worden. Das Kollektiv I (Normalkollektiv)
war aus vier Rippenknorpelproben zusammengesetzt, die im Institut für Rechtsmedizin
von Probanden entnommen wurden, die keine Trichterbrust aufwiesen und die durch einen Unfall ums Leben kamen.

Das Alter dieser Personen lag zwischen 4 und 10 Jahren. Das Kollektiv II wurde von vier weiteren Knorpelproben gebildet, die bei einer Operation zur Trichterbrustkorrektur Kindern im Alter von 2,5 bis 7 Jahren entnommen wurden. Aus diesen Gewebeproben wurden die Chondrozyten gewonnen. Zur Bestimmung des Gehalts dieser Zellen an Zink, Kalzium und Kupfer durch Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) und des Gehalts an DNA wurden jeder Probe 2 Millionen Zellen entnommen. Diese wurden in einem 15-ml-Falcon-Tube mit l ml deionisiertem Wasser lysiert. 100 ml dieser Suspension wurden für die DNA-Bestimmung und 900 ml für die Bestimmung der Ionenzusammensetzung verwendet. Die Ergebnisse der Proben 1-4 (in mg/Kg=ppm) wurden nach den Doppelbestimmungen mit (sn) bezogen auf 900mL Ausgangslösung in pMol/Zelle umgerechnet. Das Gesamt-DNA-Gewicht der normalen Chondrozyten und der Trichterbrustchondrozyten war in etwa gleich. Dieses zeigt zusammen mit der Zellzahlbestimmug, daß gleich viele Zellen von normalen Chondrozyten und Trichterbrustchondrozyten für diese Untersuchung verwendet worden sind.
Spurenelementanalytische Untersuchungen von Trichterbrustknorpel (Rupprecht et al.,
1987) ergaben einen hoch signifikanten Zinkabfall bei gleichzeitig erhöhtem Calciumgehlt gegenüber einem gesunden Kontrollkollektiv. Wir schließen aus unserer  aborchemischen Analyse das gleiche Ergebnis.

Die statistische Überprüfung der einzelnen Werte für den Gehalt an Zink, Kalzium und
Kupfer in kostalen Chondrozyten von Trichterbrustpatienten zeigt einen signifikanten
Mangel an Zink und Kupfer. Im Vergleich zu kostalen Chondrozyten von normalen
Probanden ist die Konzentration dieser Ionen etwa halb so groß. Dagegen war der Gehalt an Kalzium mehr als doppelt so hoch. Proben-Nr.
Angabe der Standardabweichung (sn-1), bezogen auf 900 mL Die Isotope 66Zn, 65Cu und 44Ca wurden bestimmt, da z.B. dieses Zn-Isotop bei den vorhandenen Ca-Konzentrationen nicht gestört wird. Durch P. Quint (1998) wurde beschrieben, daß alle Zn-Isotope bei hoher Ca-Konzentration und 63Cu durch ein Ar- Na-Molekülion gestört werden (P. Quint und K.D. Richter 1996).
Die laborchemische Analyse wurden freundlicherweise von Dr. P. Quint zur Verfügung gestellt.

4.2.3 Die Ursache von Zinkmangel in Trichterbrustchondrozyten

Wir haben biochemische und physikalische Hinweise erhalten, daß in Trichterbrustchondrozyten die Zinkionen-Konzentration erniedrigt ist. Warum die Trichterbrustchondrozyten weniger Zink enthalten, wissen wir allerdings nicht. Um die Ursachen des Zinkmangels in Trichterbrustchondrozyten zu finden, haben wir verschiedene Überlegungen angestellt. So sehen wir als Ursachen für den Zinkmangel in Trichterbrustchondrozyten im Vorfeld drei Möglichkeiten:
i) Störung der Zinkaufnahme
ii) Störung der Zinkspeicherung
iii) Störung des Zinktransports in der extrazellulären Matrix oder über die Plasmamemberan der Chondrozyten hinweg


Es ist zu bemerken, daß die nachfolgenden Ergebnisse nur für freie Zinkionen in vitro
definierten Agarosekultur gelten.

4.2.3.1 Störung der Zinkaufnahme

Wir haben im Rahmen des biochemischen Nachweises ausführlich über den Zinkeffekt
gesprochen. Dabei haben wir herausgestellt, daß Zink einen Einfluß auf die Prozessierung
von Prokollagen II hat. Da das der Agarosekultur zugegebene Zink über die Prokollagen-NProtease einen Einfluß auf die Prozessierung von Prokollagen II nimmt, können wir davon
ausgehen, daß freie Zink in den Chondrozyten aufgenommen wird und an Prokollagen-NProtease gebunden wird.

4.2.3.2 Störung der Zinkspeicherung

Zink kommt intrazellulär wahrscheinlich nicht in freier Form gebunden vor, sondern vorzugsweise an einem Trägerprotein, wie Metallothionein. Unser Ziel war es daher, durch die folgende Untersuchung eine Zinkspeicherung in den Chondrozyten nachzuweisen, um die Hypothese einer diesbezüglichen Störung verwerfen zu können. Aus isolierten Trichterbrustchondrozyten wurden Agarosekulturen vorbereitet und nach folgender Methode unterschiedlich mit oder ohne Zink kultiviert: Zwei Schalen wurden am ersten Tag für 48 Stunden mit Zink (DMEM + 100 ng/ml Insulin + 15 mmol ZnSO4) inkubiert (Abb. 4.29 Bahn 1,2). Nach dreimaligem Waschen mit DMEM wurden diese bis zum 20. Tag des Experiments ohne Zink mit (DMEM + 100 ng/ml Insulin) kultiviert und anschließend für 48 Stunden mit [I4C]-Prolin markiert. Zwei weitere Schalen wurden nach 20 Tagen Kultivierung mit DMEM 100 ng/ml Insulin zunächst mit Zink (15 mmol Zinksulfat) inkubiert und dann mit l mCi/ml C14-Prolin für 48 Stunden markiert (Abb. 4.29 Bahn 3,4).
Die markierten Kollagene aller Schalen haben wir zur Herstellung eines Fluorogramms weiterverarbeitet.
Wir sehen keinen Unterschied in Bezug auf die Prozessierung von Prokollagen II zwischen Kulturen, die am Anfang mit Zink inkubiert wurden, und solchen, bei denen dies erst nach 20 Tagen geschah. Aus diesem Ergebnis schließen wir, daß das im Medium von
Agarosekulturen zugegebene Zink unter diesen Bedingungen innerhalb von 48 Stunden in die Trichterbrustchondrozyten aufgenommen oder/und an Zellmembran gebunden und dort gespeichert werden kann.

4.2.3.3 Störung des Zinktransports in der extrazellulären Matrix der Trichterbrustchondrozyten

Es ist noch nichts Näheres darüber bekannt, in welcher Form Zink im extrazellulärem Raum transportiert wird. Im Serum bindet sich Zink an Albumin und bildet mit diesem eine Transportform, die im Blut zirkuliert. Ob Zink als Ion oder zusammen mit einem Protein als Transportprotein in die extrazelluläre Matrix transportiert wird, wissen wir nicht. Ebenfalls unbekannt ist, wie lange das Zink braucht, um die extrazelluläre Matrix zu passieren und die Zellen zu erreichen. Ein Aspekt unserer Überlegung war, wie der Transport von Zink in die extrazelluläre Matrix nachzuweisen sei. Dafür haben wir dünn geschnittene Trichterbrustknorpel zu je 2 g einmal in einer Schale als Trichterbrustknorpelgewebe mit Zink (DMEM + 100 ng/ml Insulin + 15 mM ZnSO2) inkubiert. Nach 10 Tagen wurden die Chondrozyten aus dem Gewebe isoliert und im gleichen Medium (DMEM + 100 ng/ml Insulin) in Agarose kultiviert. Nach 5 Tagen wurden die Zellen in Agarosekultur mit [1 4C]-Prolin markiert und eine der Kulturen wurde zusätzlich mit 15 mM Zink inkubiert Abb.4.29 Bahn l und 2 entsprechen DMEM + 100 ng/ml Insulin + 15 mM Zink (die Inkubation mit Zink im ersten und zweiten Tag der Kultivierung) Bahn 3 und 4 entsprechen DMEM + 100 ng/ml Insulin + 15mM Zink (die Inkubation mit Zink nach 20 Tagen der Kultivierung)
Darstellung: Fluorogramm
Alter: 5 Jahre
pN-Kollagen II
Kollagen II

(Abb. 4.30 Bahn 1). Die markierten Kollagene wurden zur Fluorographie vorbereitet. Wie das untenstehende Fluorogramm zeigt, wurde keine Prozessierungsänderung beobachtet, obwohl die Chondrozyten im Gewebe vorher mit Zink inkubiert waren (Abb. 4.30 Bahn 3 und 4). Bezüglich der Prozessierung von Prokollagen II zeigen diese Chondrozyten keinen Unterschied zu den Zellen, die im Gewebe nicht mit Zink (Abb. 4.30 Bahn 2) inkubiert waren. Aus diesem Resultat läßt sich die Vermutung ableiten, daß freie Zn-Ionen innerhalb von 10 Tagen nicht durch die extrazelluläre Matrix von Trichterbrustchondrozyten diffundieren können. Wir wissen aber nicht, in welcher Form Zink in extrazellulären Matrix transportiert wird.
Abb.4.30 Bahn 1: Die Trichterbrustchondrozyten
wurden erst im Knorpel 10 Tage mit Zink inkubiert. Sie wurden dann aus dem Gewebe isoliert und weiter in Agarose kultiviert.
Nach 5 Tagen wurden die Zellen für 48 Stunden mit [14C]-Prolin markiert und gleichzeitig mit 15 mM Zink inkubiert.
Bahn 2: Die Chondrozyten wurden erst im Knorpel 10 Tage ohne Zink inkubiert. Sie wurden dann aus dem Gewebe isoliert und weiter in Agarose kultiviert. Nach 5 Tagen wurden die Zellen für 48 Stunden mit 14C-Prolin markiert.
Bahn 3 und 4: Die Chondrozyten wurden erst im Knorpel 10 Tage mit 15mM Zink inkubiert. Sie wurden dann aus dem Gewebe isoliert und weiter in Agarose kultiviert. Nach 5 Tagen wurden die Zellen für 48 Stunden mit 14C-Prolin markiert.
Darstellung: Fluorogramm
Alter: 8 Jahre
pN-Kollagen II
Kollagen II

4.3 Die Differenzierung der Osteoblasten-ähnlichen Zellen in dreidimensionaler Matrix

Die Zellkulturtechniken, um Cytophysiologie und Cytobiochemie der Osteoblasten und deren Vorgänger zu studieren, sind vielfältig (Sodek und Berkman 1987; Majeska 1996). Kultursysteme, die Osteoblasten oder Osteoblasten-ähnlichen Zellen enthalten, sind für einige Spezies und verschiedene Hartgewebe etabiliert oder leiten sich von bestimmten Zellpopulationen auf der Line von osteogenen Vorläuferzellen ab.
Die Parameter für das prinzipielle Erstellen der Kulturen (d.h. Zusammensetzung des Mediums, Typus und Konzentration des Serums, Temperatur, Antibiotika) und die Methode ihrer Aufrechterhaltung (d.h. Ernährungsfrequenz, Isolation und Trennung, Arten der Kultivierung) sind sowohl in primären Kulturen mit einer minimalen Anzahl von Subkulturen oder Passagen, als auch in langlebigen permanenten Zellinien sehr verwandt.
Viele Primärsysteme repräsentieren an Osteoblasten reichhaltige Zellkulturen, nachdem sie aus Knochen der fötalen oder neugeborenen Nagetiere und anderer Spezies, inklusive des Menschen, isoliert wurden. Calvarien (Yeh et al. 1996; Naci et al. 1996; Chaudhari et al. 1997; Herbert et al. 1997; Lomri et al. 1997; Schirrmacher et al. 1997) sind besonders günstig, da ihre externen und internen Kortikalplatten einfach von dem Knochenmark zu trennen sind. Bei bisherigen Kulturen von osteogenen Vorlauferzellen gewinnt man Zellen aus harter Knochensubstanz, aus Periost oder aus Knochenmark (Nichols and Puleo 1997; Fromigue et al. 1998; Klein et al. 1998) oder aus embryonalen mesenchymalen Vorläuferzellen des Knochengewebes (Ong et al. 1998). Die Kultursysteme der permanenten Zellinien benutzen menschliche Osteosarcoma-Zellinien (Okamoto et al. 1998; Yellowley et al. 1998), untransformierte klonale Zellinien, wie die Maus-Calvariea entstammt der MC3T3-E1 Line 8 (Beck et al. 1998), und experimentelle unsterbliche Zellinien (Harris et al. 1995).

Im Gegensatz zu den oben genannten Zellkultursystemen, die mit zweidimensionalen gleichmäßigen Monolayern arbeiten, sind dreidimensionale Zellkultursysteme entwickelt worden, um eine poröse Matrix zu liefern, damit es möglich wird, daß Knochenzellen adherieren und in diesem System wachsen. Das verwendete Biomaterial bewegt sich zwischen synthetischen Polymeren (Attawia et al. 1995; Laurencin et al. 1996; Saat et al. 1998), bioaktiven Gläsern (El-Ghannam et al. 1997) und natürlichen Biomaterialen wie Kollagenen Schwämmen (Schoeters et al. 1992), denaturierten Schwämmen (Casser-Bette et al. 1990) und reinen Knochenmineralien (Tsuang et al. 1997). Da diese dreidimensionalen Kultursysteme sehr dicht sind, ist es nicht möglich, sie lichtmikroskopisch während der Kultivierung zu verfolgen. Eine weitverbreitete Kulturtechnik ist ein Gelkultursystem, welches das dreidimensionale Netzwerk der Proteoglycan-Polymere simuliert (Horwitz and Dorman 1970; Benya and Shaffer 1982).
Die primären periostalen osteogenen Vorläuferzellen sind multipotent, d.h. sie sind
auch in der Lage, in Chondrozyten zu differenzieren. Es bleibt jedoch unklar, ob sie diese
Eigenschaft auch nachträglich behalten, wenn sie in vitro bereits zu Osteoblasten-ähnlichen Zellen differenziert worden sind. In dieser Arbeit werden wir diese Frage beantworten und zusätzlich beschreiben, welchen Einfluß die verschiedenen Kultursysteme auf die Differenzierung von Zellen haben. Wir werden die Osteoblasten-ähnlichen Zellen biochemisch und morphologisch in verschiedenen Kultursystemen untersuchen.

4.3.1 Die Gewinnung von Osteoblasten-ähnlichen Zellen

Die osteogenen Vorläuferzellen der Periost vom Rind wurden für etwa 4 Wochen in einem adhäsiven Zustand (zweidimensionale Monolyerkulturen) zusammen mit fötalem Rinderserum kultiviert. Früher ist gezeigt worden, daß die Zellen in so einem Kultursystem konfluent sind und morphologisch wie Osteoblasten aussehen (Jones et al., 1991).
Außerdem synthetisieren sie die Proteine wie alkalische Phosphatase, Osteocalcin, Osteonectin und Kollagen I. Diese differenzierten Osteoblasten-ähnlichen Zellen werden in folgende Kultursysteme transferiert und biochemisch und morphologisch untersucht.

4.3.2 Die Kultivierung von Osteoblasten-ähnlichen Zellen in adhärenten Monolayerkulturen

4.3.2.1 Morphologische Untersuchungen

i) Lichtmikroskopische Untersuchung
Die nach vier Wochen im Monolayer-Kultur-System differenzierten Osteoblastenähnlichen Zellen wurden in Monolayerkultur passagiert. 5×105 in Monolayerkultur passagierten Osteoblasten-ähnlichen Zellen wurden mit 10% FKS kultiviert. Sie prolifederen und werden in der Zeit (etwa nach zwei Woche) konfluent. Die Zellen haben eine polygonale Form und bilden Fortsätze, durch die Zell-Zell-Kontakte gebildet werden (Abb. 4.31).
Zellfortsätze Abb. 4.31: Die lichtmikroskopische Aufnahme von Osteoblasten-ähnlichen Zellen in Monolayerkultur nach einer Wochen: Die Zellen wurden mit 10% FKS kultiviert und zeigen in einer Woche Fortsätze.

ii) Elektronenmikroskopische Untersuchung
Im Elektronenmikroskop werden ebenfalls langgestreckte Zellen beobachtet, die mit Nachbarzellen in Kontakt kommen. In der zytoplasmatischen Zusammensetzung sind sie ähnlich wie die Osteoblasten (gut entwickeltes rauhes endoplasmatisches Reticulum und ungewöhnlich lange Lysosome und Phagolysome) (Abb. 4.32).
Abb. 4.32 Die elektronenmikroskopische Aufnahme von Osteoblasten-ähnlichen Zellen in Monolayer-Kultur nach zwei Wochen: Die Zellen auf Monolayer-Schale wurden fixiert. Für die elektronenmikroskopische Aufnahme wurden Semidiinnschnitte angefertigt, die mit Uranylacetat fixiert sind. Die Zellen sind langgestreckt ähnlich der Osteoblasten mit gut entwickeltem rauhem endoplasmatischem Retikulum und ungewöhnlich lange Lysosome und Phagolysolysome.
Die Kontrastierung: 6000x
Die elektronenmikroskopische Aufnahme wurden freundlicherweise von Dr. T. Szuwart zur Verfügung gestellt.

4.3.2.2 Biochemische Untersuchungen

i) Kollagen-Synthese der Osteoblasten-ähnlichen Zellen in Monolayer-Kultur
Nach 14 Tagen haben wir die Kollagene mit [14C]-Prolin markiert. Die markierten Kollagene haben wir aus dem Medium extrahiert und zu einem Fluorogramm weiterverarbeitet.
Wie wir auf diesem Fluorogramm sehen (Abb. 4.35, Bahn 2), synthetisieren die Osteoblasten-ähnlichen Zellen drei Kollagene (Kollagen I, III, V).
Die obere Bande verschwindet nach Reduktion mit ß-Mercaptoethanol, welches charakteristisch für Kollagen III ist.
Lysosome und Phagolysome Osteoblasten-ahnhchen Zellen Nukleoli Fndoplasmatische Reticulum Boden der Schale

ii) Nachweis der alkalischen Phosphatase-Aktivität
Die Produktion von alkalischer Phosphatase nahm stark zu, stieg aber nicht kontinuierlich im Zeitraum von 2 Wochen (Abb. 4.36). Dies ist auch für authantische Osteoblasten
charakteristisch.

4.3.3 Die Kultivierung von Osteoblasten-ähnlichen Zellen in Agarose

4.3.3.1 Morphologische Untersuchungen

i) Lichtmikroskopische Untersuchung
Die Osteoblasten-ähnlichen Zellen wurden für 4 Wochen in Monolayer kultiviert, von der Schale durch Kollagenase-Behanlung abgelöst. 2×106 Zellen wurden in Agarose eingebettet und mit 10% FKS kultiviert. Unter dieser Bedingungen sehen die Zellen kugelförmig ähnlich der Chondrozyten aus. Im Gegensatz zu Monolayerkulturen beobachtet man weder Proliferation noch die Bildung von Zellfortsätze (Abb. 4.33).
Abb. 4.33: Lichtmikroskopische Aufnahme von Osteoblasten-ähnlichen Zellen in Agarose in zwei Woche: 2xl06 Zellen wurden in Agarose eingebettet und mit 10% FKS kultiviert. Die Zellen sehen unter dieser Bedingung ähnlich der Chondrozyten.

ii) Elektromiskroskopische Untersuchungen
Im Elektronenmikroskop zeigen die Zellen die typischen ultrastrukturellen Merkmale von Chondrozyten aus differenzierten Knorpeln (Bruckner et al., 1989). Einige dieser Merkmale sind die kugelförmige Gestalt und Kerne mit einem oder mehreren auffälligen Nuklei.
Abb. 4.34: Die elektronenmikroskopische Darstellung von Osteoblasten-ähnlichen Zellen in zwei Wochen in Agarosekulturen: die Zellen wurden in Agarose fixiert. Für elektronenmikroskopische Aufnahme wurde Semidünnschnitte angefertigt, die mit Uranylacetat kontrastiert sind. Die Zellen sind kugelförmig ähnlich der Chondrozyten und zeigen Kerne mit einem oder mehreren Nuklei.
Kontrastierung: 9.000 x
Die elektronenmikroskopische Aufnahme wurden freundlicherweise von Dr. T. Szuwart zur Verfügung gestellt.

4.3.3.2 Biochemische Untersuchungen

i) Kollagen-Synthese der Osteoblasten-ähnlichen Zellen in der Agarose-Kultur

Nach 14 Tagen wurden die Kollagene mit metabolisch [14C]-Prolin markiert, pepsiniert, aus dem Medium extrahiert und zur Fluorographie verabeitet. Wie aus dem Fluorogramm ersichtlich ist, synthetisieren die Osteoblasten-ähnlichen Zellen in Agarose Nuklei Kollagen II, jedoch kein Kollgen X, I (Abb. 4.35 Bahn 3). Durch die Markierung von pepsiniertem Kollagen II in einem Immun-blot mit monokolonalen Antikörpern gegen Kollagen II läßt sich die Anwesenheit von Kollagen II in Agarose-Kultur bestätigen.
Kollagen II ist ein Merkmal von Chondrozyten (Abb.4.35 Linie 4). Die Zellen synthetisieren keine Kollagene I und III, die Merkmale von Osteoblasten und mesenchymalen Vorläuferzellen sind.
Abb. 4.35: Die Darstellung von Kolljagen-Synthese der Osteoblasten-ähnlichen Zellen in der Monolayerkultur (Bahn2) und Agarosekultur (Bahn 3,4) im Vergleich zu Standard (Bahn 1). Die Zellen in Agarosekultur synthetisieren Kollagen II.

ii) Nachweis der alkalischen Phosphatase-Aktivität

Die nach Kultur in Agarose phenotypisch modulierten Periostalzellen produzieren keine Aktivität der alkalischen Phosphatase. Daher haben die Zellen unter diesen Kulturbedingungen Osteoblasten-ähnlichen Eigenschaften aufgegeben.
Abb. 4.36: Die alkalische Phosphatase-Aktivität der Osteoblasten in verschiedenen Matrices: Die Aktivität der alkalischen Phosphatase von Zellen in Kollagen I-Gel steigt in ersten Tagen kontinuierlich. In Agarosekultur zeigen die Zellen keine Aktivität der alkalischen Phosphatase

4.3.4 Die Kultivierung von Osteoblasten-ähnlichen Zellen im Kollagen IGel

4.3.4.1 Morphologische Untersuchung

i) Lichtmikroskopische Untersuchung
Die 2×106 Osteoblasten-ähnlichen Zellen, die 4 Wochen in Monolayer kultiviert waren, wurden abgelöst und in Kollagen I-Gel weiter mit 10% FKS kultiviert. Nach 2 Wochen Kultivierung sehen die Zellen polygonal aus und entwickeln Fortsätze, durch die die Zellen miteinander in Kontakt kommen. Die Zellen bilden wie die Osteoblasten eine netzartige Struktur und proliferieren.

Abb. 4.37: Lichtmikroskopiscbe Aufnahme von Osteoblasten-ähnlichen-Zellen in Kollagen I-Gel nach zwei Wochen. Die Zellen sind gestreckt ähnlich der Osteoblasten und bilden die Fortsätze.
Die Kultivierung: mit 10% FKS Zellzahl: 2×106 Zellen
ii) Elektronenmikroskopische Untersuchung
In elektronenmikroskopischer Untersuchung sehen wir langgestreckte Zellen, die aufgrund ihrer breiten Ausdehnung und ihrer Fortsätze mit den Nachbarzellen in Kontakt kommen. Hinsichtlich ihrer zytoplasmatischen Zusammensetzung sind sie ähnlich wie die Osteoblasten.
Abb. 4.38 Elektronenmikroskopische Aufnahme von Osteoblasten-ähnlichen-Zellen in Kollagen I-Gel in zwei Wochen: Die Zellen in Kollagen I-Gel wurden fixiert. Für elektronenmikroskopische Aufnahme wurde Semidünnschnitte angefertigt, die mit Uranylacetat fixiert sind. Die elektronenmikroskopische Aufnahme wurden freundlicherweise von Dr. T. Szuwart zur Verfügung gestellt.

4.3.4.2 Biochemische Untersuchungen

i) Kollagen-Synthese der Osteoblasten-ähnlichen Zellen in Kollagen I-Cel
2×106 Zellen wurden in Kollagen I eingebettet und mit 10% FKS kultiviert. Nach 14 Tagen haben wir die Kollagene mit [14C]-Prolin markiert. Die pepsinresistenten und markierten Kollagene wurden zu einem Fluorogramm weiterverarbeitet. Wie das Fluorogramm (Abb. 4.39) zeigt, synthetisieren die Zellen Kollagen I und V. Bemerkenswert ist, daß die Zellen in Kollagen I-Gel im Gegensatz zu Monolayer-Kulturen kein Kollagen III synthetisieren.
Abb.4.39 Die Kollagen-Synthese von Osteoblasten-ähnlichen-Zellen in Monolayerkultur (Bahn 3) und Kollagen I-Gel (Bahn 2) im Vergleich zum Standard (Bahn 1). Die Zellen wurden in Kollagen I-Gel eingebettet und mit 10% FKS kultiviert. Die Zellen in Kollagen I-Gel synthetisieren kein Kollagen III (Bahn II).
ii) Nachweis der alkalischen Phosphatase-Aktivität

Die Produktion alkalischer Phophatase wurde stark stimuliert. Die Zellen produzieren am 1. Tag alkalische Phophotase. Die alkalische Phosphatase-Aktivität nimmt während dieser Zeit zu. Somit zeigen die Zellen ein wesentliches Merkmal von Osteoblasten.

Jul 9th, 2009

Material und Methode

Posted by admin @ 8:48 am

3. Material und Methode

3.1 Materialien

Lösungen und Reagenzien:

Allgemeine Reagenzien
                 Glycerol (ICN, Aurora, OH, USA)
                 Glycin Natriumlaurysulfat (SDS)
                 Tris
                 Dinatriumhydrogenphosphat Dihydrat (Roth, Karlsruhe, D)
                 Eisessig
                 Harnstoff
                 Methanol
                 Natriumchlorid
                 0,2% P-Nitrophenylphosphat (Sigma 104 Phosphatase Substrat)
                 Ammoniumacetat (Merck, Darmstadt, D)
                 Ethanol
                 Isopropanol
                 Natriumhydrogenkarbonat
                 Salzsäure, konz.
                 Diethanolamin (Sigma, Deisenhofen, D)
                 Freud'sches Adjuvans (kompl./nichtk.)

PMSF Lösungen und Reagenzien (Zellkultur):

Krebspuffer
                 15,7 mM Na2HPO4,
                 1,6 mM KH2PO4,
                 111,2 mM NaCl,
                 5,4 mM KC1,
                 1,3 mM MgC1
                 2,4 mM NaHCO3,
                 13 mM Glucose,
                 pH 7,4

PBS (Zellkultur)
                 140 mM NaCl,
                 8 mM Na2HPO4,
                 3 mM KC1,
                 1,5 mM KH2P04,
                 pH7,4
                 Dulbecco's modifiziertes Eagle Medium (Gibco Life Technologies,
                 Paisley, Schottland, Kat.-Nr.: 52100-013)
                 Kollagenase B aus Clostridium histolyticum, EC 3.4.24.3. (Boehringer Mannheim, D, Ka.-Nr.: 1088831)
                 hochschmelzende Agarose SEA KEM (FMC BioProducts Rockland, USA, Biozym, Hess. Oldendorf, D, Kat. Nr.: 50004)
                 niedrigschmelzende Agarose SEA USA, PLAQUE (FMC BioProducts Rockland, Biozym, Hess,

                 Oldendorf, D, Kat. Nr.: 50102) Penicillin,
                 Streptomycin (Gico Life Tehcnologies, Paisley, Schottland, Kat.-Nr.: 15140-114)
                 Fungizon: Amphotericin B 250 mg/ml (Gibco Life Technologies, Paisley, Schottland, Kat.- Nr.: 15290)
                 Fötales Kälberserum (PAA, Linz, A, Kat. Nr. : A 1 5-043)
                 14C-Prolin (NEN, Dreiech, D)
                 L-Cystein (Sigma, Deisenhofen, D)
                 Ascorbinsäure (Merck, Darmstadt, D)
                 ß-Aminopropionitril (Sigma, Deisenhofen, D)
                 Pyruvat (Fluka, Buchs, CH)
                 Insulin (bov. Pankreas) (Boehringer, Mannheim, D, Dat.-Nr.:977420)
                 IGF-I (Boehringer, Mannheim, D)
                 Storage-puffer 0,4 M NaCl, 100 mM Tris-HCL,
                 pH 7,4 Lösungen und Reagenzien (alkalische Phosphatase) 

Reaktionslösung
                 0,2% p-Nitrophenylphosphat in Diethanolamin- HCl,
                 pH 9,8
Stopplösung
                 2M NaOH,
                 0,2 mM EDTA

Lösungen und Reagenzien (Elektrophorese, Kollagenanalyse)
                 40% (w/v) Acrylamid/Bisacrylamid-Stammlösung Acrylamid/Bisacrylamid 37,5:1) (Appligene oncor, Illkirch, F)
                 Sammelgelpuffer (Stammlösung)
                 0,5 M Tris, 0,4% SDS, pH 6,8
                 Trenngelpuffer (Stammlösung)
                 1,5 M Tris, 0,4% SDS, pH 8,8
                 Kammerpuffer
                 25 mM Tris, 0,1% SDS, 0,2 M Glycin

SDS-Probenpuffer:
                 0,1 M Tris-HCl, pH 6,8 mit 10% (w/v) Glycerol, 2% (w/v) SDS, 0,8 M
                 Harnstoff, 0,001% (w/v) Bromphenolblau.
                 Der reduzierende0 Probenpuffer enthielt 5% (v/v)
                 ß-Mercaptoethanol.

Entfärblösung
                 10% Methanol, 10% Essigsäure Pepsin (procine)
                 Coomassie Blue R-250 (Serva, Boehringer Ingelheim Bioproducts Partnership, Heidelberg)
                 Coomassie Blue-Lösung 0,1% Coomassie in 25% 2-Propanol, 10% Essigsäure
                 Ammoniumperoxodisulfat
                 Molekulargewichtsstandard (6,4- 200 kDa) (Bio-Rad Laboratories, Hercules, CA, USA)
                 Plyklonaler Antiköper gegen Kollagen X des Huhns (Von der Mark, 1997)

Sekundärer Antikörper gegen Immunglobulin G des Kaninchens
gekoppelt mit Peroxidase (Kirgegaard & Perry Lab., WAK Chemie, Bad Homburg v.H.)
Chemoluminessenzsystem ECL (Amersham Life Science, Kat.-Nr.: 2106)
4-Chlor-l-Naphtol (Sigma, Deisenhofen, D)

Lösungen und Reagenzien (Elektronmikroskopie):

Fixierlösung
                 3% Paraformaldehyd,
                 0,4% Glutaraldehyd,
                 3,4% 0,1M Natriumcacodylat pH 7,4,
                 Osmium,
                 Propylenoxid

3.2 Methoden

3.2.1 Chondrozytenzellkultur

3.2.1.1 Die Isolierung von Chondrozyten aus Rippenknorpel

Der aus der Kinderchirurgie und des Rechtsmedizin erhaltene Rippcnknorpel wurde zweimal in Krebspuffer mit 100 U/ml Penicillin, 100 mg/ml Streptomycin und 2,5 mm/ml Fungizon gewaschen und von Perichondrium und Geweberesten befreit. Anschließend wurde er dreimal in Krebspuffer mit 10 U/ml Penicillin, 100 mg/ml Streptomycin und 2,5 mg/ml Fungizon gewaschen. Der gewaschene Rippenknorpel wurde quer zu seiner Längsachse ca. 0,3 mm dünn geschnitten. Der geschnittene Knorpel wurde über Nacht mit 2 mg/ml bakterieller Kollagenase in DM EM unter Zusatz von 100 U/ml Penicillin, 100 mg/ml Streptomycin und l mM Cystein im Brutschrank (37° C; 5% CO2) verdaut.

Um die Verdauung zu beschleunigen wurden die Zellen durch vorsichtiges Aufsaugen und Zurückpipettieren der Verdauungslösung suspendiert. Die Dauer des Verdauens durch die Kollagenase steigt mit dem Alter des Knorpels an. Nach der Verdauung wurde die entstandene Chondrozytensuspension durch einen 40mm Nylonfilter gegeben, um Gewebereste zurückzuhalten. Zur Vermeidung von Zellverlusten wurde die Petrischale und der Nylonfilter anschießend mit Krebspuffer gespült und die Zellsuspension auf 50 ml aufgefüllt. Sie wurde zentrifugiert ( 600 x g, 5 min, RT) und das Zellpellet erneut in 50 ml Krebspuffer resuspendiert. Insgesamt wurden die Zellen zweimal gewaschen.

Sie wurden schließlich in 10 ml Krebspuffer aufgenommen, die Zellzahl dieser Suspension wurde mit Hilfe einer Neubauer-Kammer im Phasenkontrastmikroskop bestimmt. Die Zellsuspension wurde zentrifugiert, und das Zellpellet wurde anschließend in DMEM so aufgenommen, daß die Zellzahl dieser Einzelzellsuspension auf 4×106 eingestellt wurde.
Diese Zellsuspension wurde weiter für die Agarosesuspensionskulturen verwendet.

3.2.1.2 Die Agarosesuspensionskulturen (Benya und Schaffer, 1982)

Sterile Petrischalen wurden mit einer 1% (w/v) hochschmelzendcn Agarose (in H2O) beschichtet (0,7 ml/ 35 mm Schale). Um die Agaroselösung zu sterilisieren, wurde sie autoklaviert. Dann wurden 700 ml der sterilen Agaroselösung auf dem Schalenboden verteilt. Diese Schicht ließ man bei Raumtemperatur gelieren. Zum Anlegen der Agarosesuspensionskultur wurde die Zellsupension im Verhältnis 1:1 zu einer Mischung aus gleichen Teilen zweifach konzentriertem DMEM und 2%-iger wäßriger Agarose gegeben.
Die Agaroselösung wurde autoklaviert und dann mit dem zweifach konzentrierten Medium gemischt. Zu dieser Mischung wurden die Zellsuspension, die auf die erforderliche Zelldichte eingestellt war, pipettiert. Die Schalen wurden 15 Minuten lang auf eine Wärmeplatte gestellt, um die Agarose vorläufig in flüssigem Zustand zu halten.
Dadurch sedimentieren die Chondrozyten auf die Grenzfläche der beiden Agaroseschichten. So wird die Beobachtung der Zellen im Phasenkontrastmikroskop und die Quantifizierung der Zellzahle ermöglicht. Nach erfolgter Sedimentation der Zellen wurde die flüssige Zell-Agarosemischung im Kühlschrank bei 4°C 10 Minuten lang verfestigt.

Nach dem Gelieren der Agarose wurden die Kulturen im Brutschrank (5% Kohlendioxid, 37° C) inkubiert. Das Kulturmedium wurde auf die Agarosesuspension pipettiert. Als Kulturmedium wurde DMEM verwandt, welches 60 mg/ml ß- Aminopropionitril, 25 mg/ml Ascorbat, l mM Cystein, l mM Pyruvat, 1% (v/v) Penicillin und 1% (v/v) Streptomycin enthielt. Je nach den experimentellen Bedingungen wurden Wachstumsfaktoren, fötales Kälberserum und/oder 15 mM Zinksulfat zugesetzt. Im Abstand von 3 Tagen wurde das Medium ersetzt.

3.2.1.3 Die Bestimmung der Zellvitalität mit Trypanblauausschuß

Für die Bestimmung vitaler Zellen haben wir 100 ml einer 0,5% Trypanblaulösung in PBS zum Kulturmedium pipettiert. Nachdem die Kultur für 20 Minuten im Brutschrank inkubiert worden war, wurde das Medium von der Kultur abgenommen, und die Zahl der Trypanblau negativen Zellen ermittelt.

3.2.1.4 Die Kollagenpräparation aus Knorpelzellkulturen

i) Markierung der Zellen
Die Kulturen wurden in der Regel von 15 Uhr bis 63 Uhr (für 48 Stunden) mit l mCi/ml L-[C14-U]-Prolin metabolisch markiert. Anschließend wurde entweder nur das abgenommene Medium oder die gesamte Kulturschale bei -20° C eingefroren.
ii) Isolierung der Kollagene aus der gesamten Kultur
a) Isolation der nativen Kollagene

Nach dem Auftauen der eingefrorenen Kultur wurde das abgenommene Medium in 2ml-Eppendorfgefäßen zentrifugiert (1000 x g, 15min), um die Agarose vom Medium zu trennen. Das Pellet wurde verworfen, und aus dem Überstand wurden die Kollagene bei einer Konzentration von 4,5 M NaCl ausgefällt. Man gab langsam festes NaCl bis zu einer Konzentration von 4,5 M zu, rührte für 6 Stunden und zentrifugierte (RPM 14000, F2402, 30min, 4° C, 17530g) die präzipitierten Kollagene ab. Der Überstand wurde verworfen. Das Pellet wurde in 300 ml Storage-Puffer (0,4 M NaCl, 0,1 M Tris-HCl, pH 7,4) aufgenommen. Die Kollagene wurden mit 1700 ml Ethanol präzipitiert, abzentrifugiert (F2402, 17530 x g, 20 min, 4° C) und in deionisiertes Wasser aufgenommen. Nach 2 mal wiederholter Ethanolpräzipitation wurden die Kollagene in 100 ml Probenpuffer aufgenommen.

b) Isolation der Pepsin-resistenten Kollagene

Nach dem Auftauen wurde die zellhaltige Niedertemparatur-Agarose von der Hochtemperatur-Agarose getrennt. Die Hochtemperatur-Agarose wurde verworfen. Die Niedcrtemperatur-Agarose wurde in Zentrifugenröhrchen (Beckman) überführt, mit dem Medium der Kulturschale vereinigt und für den limitierten Pepsinverdau mit 5ml einer Pepsinlösung (l mg/ml Pepsin in 0,5 M Essigsäure, 0,4 M NaCl) versetzt. Diese Lösung wurde 72 Stunden bei 4° C gerührt, anschließend mit 500 ml l M Tris-Lösung (ungepuffert) versetzt und mit 10 M NaOH zum Umschlagspunkt von Phenolrot neutralisiert.

Durch Zugabe von festem NaCl wurde eine Konzentration von l M NaCl eingestellt. Diese Lösung wurde zur vollständigen Extraktion der Kollagene bei 4° C über Nacht gerührt und anschließend zur Abtrennung von Zelldebris und Agarose zentrifugiert (JA 20,1, 28980 x g, 4° C, 30 min). Da frühere Studien (Shaffer, 1982; Bruckner et al., 1989) ergeben hatten, daß diese Fraktion kein nachweisbares Kollagen mehr enthält. Das Pellet wurde verworfen, und die Kollagene wurden durch Erhöhen der NaClkonzentration von 4,5 M NaCl ausgefällt. Dazu wurde festes NaCl in die Lösung gegeben (200 mg/ml).

Die Lösung ließ man für 4 Stunden bzw. über Nacht rühren. Die ausgefallenen Kollagene wurden abzentrifugiert (F2402, RPM 14000, 17530 x g, 20 min, 4°C). Das Pellet wurde in 300 μl Storage-Puffer (0,4 M NaCl, 100 mM Tris-HCl, pH 7,4) aufgenommen und in einem 2ml Eppendorf überfuhrt. Die Kollagene wurden mit 1700 μl Ethanol präzipitiert, abzentrifugiert (F2402, 17530 x g, 20 min, 4°C) und das Pellet in bidestilliertcs Wasser aufgenommen. Nach wiederholter Ethanolpräzipitation wurden die Kollagene in 100 μl Probepuffer aufgenommen. Die Kollagene wurden mit 5 μl Mercaptoethanol reduziert.

3.2.1.5 Die Bestimmung der Zellproliferation

Für die Bestimmung der Zellproliferation wurde nach bestimmten Zeitintervallcn dieselbe Stelle der Kulturschale (sichtbar gemacht durch einen kleinen Punkt am Boden der Petrischale) durch ein Phasenkontrastmikroskop vergrößert und fotografiert (Zeiss Axiowert)
10). Die Anzahl der Zellen auf den Aufnahmen (mindestens 100 Zellen) wurden über die ganze Kulturzeit verfolgt und durch Zählen bestimmt.

3.2.1.6 Nachweis der alkalischen Phosphatase

Der Nachweis der alkalischen Phosphatase wurde durch deren Reaktion von mit p- Nitrophenylphosphat erbracht (Bessey et al., 1946). Die Aktivität in den Medienüberständen blieb auch nach längerer Lagerung bei -20° C erhalten. 50 μl Aliquots des Medienüberstands im Eppendorfgefäß wurden mit 450 μl einer Reaktionslösung (0,2% p- Nitrophenylphosphat in Diethanolamin-HCl, pH 9,8) versetzt.
Im Brutschrank wurden die Ansätze bei 37° C für 30 min inkubiert und anschließend mit einer Stopplösung (2M NaOH, 0,2 mM EDTA) versetzt. Bei einer Wellenlänge von l = 405 nm wurde die Extinktion des gelben Reaktionsprodukts (P-Nitrophenol) bestimmt.

3.2.1.7 Elektrophorese, Autoradiographie, Western-Blot

i) Elektrophorese

Die im Probepuffer für 3 min bei 95° C denaturierten Proteine wurden auf Polyacrylamidgradientengelen elektrophoretisch getrennt (Laemmli, 1970). Zur Analyse der Kollagene wurden die Kollagen im Probepuffer (0,8 M Harnstoff, 10% (w/v) Gly-cerol, 2% (w/v) SDS, 0,001% (w/v) Bromphenol Blau, 0,1 M Tris-HCl, pH 6,8) aufgenommen und durch 4,5-15% Polyacrylamidgradientengelen getrennt. Die Anfärbung der Proteine erfolgte in einer wäßrigen Lösung mit 0,1% (w/v) Coomassie Brillant Blue R-250 in 25% (v/v) 2- Propanol, 10% (v/v) Essigsäure, die Entfärbung der Gele erfolgt in 10% (v/v) Essigsäure, 10% (v/v) Methanol.

ii) Autoradiographie (Bonner and Laskey, 1974)

Nach der Färbung mit Coomassieblau wurden die Gele für die Fluorographie vorbereitet, indem sie dreimal für je 15 Minuten in Dimcthylsulfoxid (DMSO) äquilibriert und danach für 2 Stunden in 20% (W/V) Diphenyloxazol (l DPO)/DMSO) getränkt wurden.
Die behandelten Gele wurden ausgiebig gewässert und anschließend ge trocknet.

Die Exposition der Gele erfolgte bei -80° C auf Kodak XAR-5 Röntgenfilmen.

iii) Imiminblot
Die elektrophoretisch aufgetrennten Proteine wurden im Immunblot auf eine Nitrocellulose-Membran elektrotransferiert (Towbin et al., 1979).

Dazu wurden das PA-GEGel und die Nitrocellulosemembran mit Filterpapieren und Schwammtüchern zwischen Gitter geklemmt und in einen Tank zwischen zwei Plattenelektroden getaucht, der mit Blotpuffer (50 mM Tris, 3580 mM Glycin, 0,1% (w/v) SDS, 20% (v/v) Methanol) gefüllt war. Bei einer Spannung von 30V und einer Stromstärke von 490 mA wurden die Proteine für 6 Stunden elektrotransferiert.

Soweit notwendig wurden transferierte Proteine auf der Membran mit 0,1% (w/v) Coomassie Blue R-250 in 40% (v/v) Methanol, 1% (v/v) Eisessig für l Minuten gefärbt und mit 50% (v/v) Methanol entfärbt. Die Blotmembran wurde zur Blockierung unspezifischer Bindungsstellen nach dem Transfer mit 2% Trockenmilchpulver in PBS behandelt und über Nacht bei 4°C unter Schütteln mit dem primären Antikörper in entsprechender Verdünnung in 0,5% Trockenmilchpulver in PBS inkubiert. Die Membran wurde nach mehrfachem Waschen mit PBS mit dem zweiten Antikörper gegen IgG des Kaninchens in 0,5% Trockenmilchpulver in PBS 2 Stunden bei Raumtemperatur inkubiert. Immunreaktive Banden wurden nach intensivem Waschen mit einem Chemolumineszen/system oder unter Verwendung einer Substratlösung aus 0,18 mg/ml 4-Chlor-l-Naphtol und 0,04% H2O2 delektiert.

3.2.1.8 Elektronenmikroskopie

a) Präparation
Für elektronenmikroskopische Untersuchungen wurden die Agarosekulturen folgendermaßen vorbereitet: Ein Stück Kultur, bestehend aus Hoch- und Niedertemperaturagarose, wurde 4 Stunden lang bei 4°C in 3% Glutaraldehyd/ 0,1 M Natriumcacodylat pH 7,4 fixiert. Nach Waschen mit PBS pH 7,4 wurde es für l Stunde bei Raumtemperatur mit Osmium inkubiert und dann in einer aufsteigenden Alkoholreihe entwässert (15 min Leitungswasser, 15 min 70% EtOH, 15 Minuten 90% EtOH, 15 min 96% Ethanol, 2 x 25 min EtOH abs.). Danach wurde das Stück 2×15 min in Propylenoxid gelegt und dann über Nacht bei 4° C in ein Eponpropylenoxid-Gemisch gegeben. Nach Einbettung in Epon (3 Tage im Wärmeschrank bei ca. 65°C zur Polymerisierung) wurden Semidünnschnitte und Ultradünnschnitte am (Ultra)-Mikrotom angefertigt.

b) Elektronenmikroskopische Untersuchungen Das verwendete Transmissionselektronenmikroskop Zeiss EM902 ist ein TEM mit einem zwischen dem ersten und zweiten Projektivlinsensystem integrierten Castaing-Henry- Energiefilter.

Es hat ähnliche Abbildungseigenschaftcn wie ein konventionelles TEM mit den Vorteilen verbesserter Bildkontraste im Abbildungs- und Beugungs-Modus bei der sogenannten zero-loss Filterung. Hierbei wird in Näherung die chromatische Aberration durch Ausfilterung unelastisch gestreuter Elektronen unterdrückt und damit der Kontrast und die laterale Auflösung erhöht. Eine weitere Kontrastierung (z.B. mit Uranylazetat) und damit eine weitere Manipulation des nativen Zustands der Proben war daher nicht mehr notwendig. Parallel zur Morphologie wurde auch die strukturelle Ausprägung und Anordnung der ersten Mineralbildungen durch zero-loss gefilterte Elektronenfeinbereichsbeugung untersucht.
Durch die Tatsache, daß bei elektronenmikroskopischer Beugung eine sehr viel geringere Anzahl periodisch wiederkehrender atomarer Baugruppen im Kristallgitter zur Erzeugung elektronenmikroskopischer Beugungsreflexe gegenüber der Röntgenbeugung ausreicht, und durch 3 Material und Methoden 50 die Erhöhung des Kontrastes aufgrund der zero-loss Filterung, konnte die Anordnung und strukturelle Ausprägung der primären Kristallbildungen bei den Matrix-vesikeln weitgehend geklärt werden. (Mit Dank an Dr. U. Plate für die elektronenmikroskopischen Untersuchungen).

3.2.1.9 Der Gewinn von Osteoblasten-ähnlichen-Zellen

Die primären osteogenen Vorläuferzellen wurden aus Kälberpriost gewonnen. Hierzu wurde das Periostgewebe des Methacarpus frei präpariert und dann vorsichtig von Knochen abgelöst. Schmale Stücke mit einer Fläche von 0,5 x 1cm wurden geschnitten und mit der osteogenen Seite nach unten in Kulturschale (etwa 10 Stück proSchale) verteilt. Die Explantate wurden in DMEM mit 75/L Glutamin, 10% FKS, Penicillin 100 μg/ml, Streptomycin 100 μg/ml, unter Zusatz von 50 μg/ml Betaaminopropionitrite (BAPN), 50 μg/ml Ascorbat, 1 mM Cystein und 1 mM Pyruvat bei 37°C und 5% CO2 kultiviert. Das Medium wurde 1 x pro Wochen gewechselt. Nach 4 Wochen sind Osteoblasten-ähnlichen Zellen aus dem Perioststück ausgewachsen und können für weitere Versuche verwendet werden. Hierzu wurden die Zellen durch Inkubation mit Kollagenase und Tyrode-Lösung abgelöst, gesammelt und mit 500 g/min zentifugiert. Das so gewonnene Zellpellet wurde für weitere Untersuchungen eingesetzt. (Mit Dank an H, P. Wiesmann für den Gewinn der Osteoblasten-ähnlichen Zellen).

3.2.1.10 Die Kultivierung der Osteoblasten-ähnlichen-Zellen in Kollagen I-Gel

Für das Anlegen der Zellkulturen wurde eine Lösung von 5 mg/ml Kollagen I in 10 mM Salzsäure hergestellt. Diese Lösung wurde zur Sterilisation gegen 10 mM HCl mit 0,5% Chloroform dialysiert. Durch häufiges Redialysieren gegen 10 mM HCl wurde das Chloroform entfernt. Die Schalenböden wurden mit einer Trägerschicht bedeckt, die ebenfalls aus einem Kollagen I-Gel bestand. Dazu wurde die Kollagenlösung mit der gleichen Menge zweifach konzentrierten Mediums und einer entsprechenden Menge normalen DMEM gemischt, so daß eine Kollagenkonzentration von 1,2-1,25 mg/ml eingestellt wurde. In die Schalen wurden jeweils etwa 800 μl der Lösung pipettiert. Die Schalen wurden über Nacht im Brutschrank inkubiert, so daß sich ein festes Trägergel bildete.

Zum Anlegen der Kulturen wurde die Kollagenlösung mit der gleichen Menge zweifach konzentrierten DME Mediums gemischt. Dieser Lösung wurde die entsprechende Menge der Zellsuspension zugegeben, so daß die Zellzahl 2×106 Zellen/ml in der fertigen Suspension betrug. In jede Kulturschale wurden 800 μl der Suspension pipettiert. Die Kollagenkonzentration in der Gelmatrix betrug 1,2 oder 1,25 mg/ml. Die Kollagene ließ man im Brutschrank über Nacht zu einem festen Gel erstarren.

3.2.2 Gewebeuntersuchungen

3.2.2.1 Die Isolation von denaturierten Kollagenpolypeptide aus dem Rippenknorpel

2g Rippenknorpel wurde der von Perichondrium und anderem Fremdgewebe befreit, dreimal mit Krebspuffer gewaschen, in 0,3 mm dicke Scheiben geschnitten und in 20 ml 50 mM Tris, 4,5 M Guandinin, 5mM EDTA, 5mM Benzamid, 5mM N-Ethyl-Maleimide, pH 7,4 inkubiert. Danach erfolgt eine Homogenisation mit einem Polytron-Homogenisator.

Die entstehende Suspension wurde in einem 50 ml Falcontube bei 4° C geschüttelt. Nach 24 Stunden Schütteln wurde die Suspension zentrifugiert. Der Überstand der Rohkollagenlösung wurde dreimal gegen das 20-fache Volumen von DEAE-Puffer (2 M Harnstoff, 0,2 M NaCl, 0,1 M Tris-HCl, pH 7,4) dialysiert und anschließend auf 40 ml verdünnt. Nach dem Zentrifugieren (JA 30.50, 15000 rpm, 4° C, 15 min, 27200 x g) wurde 200 μl Kollagenlösung mit 1800 μl Alkohol bei 4°C 3 Stunden präzipitiert, abzentrifugiert (F2402, 17530 x g, 20 min, 4 °C) und das Pellet in bidestilliertes Wasser aufgenommen. Nach wiederholter Ethanolpräzipitation wurden die Kollagene in 100 μl Probepuffer aufgenommen. Die Kollagene wurden mit 5 μl Mecaptoethanol reduziert.

3.2.2.2 Elektronenmikroskopie

Der Knorpel wurde mit Krebspuffer gewaschen und von Perichondrium und Fremdgewebe befreit. Der so erhaltene Knorpel wurde dünn (ca. 0,3 mm) geschnitten und in 3% Glutaraldehyd/ 0,1 M Natriumcacodylat, pH 7,4 fixiert. Die weiteren Schritte erfolgten parallel zur bereits oben beschriebenen Elektronenmikroskopie der Agarosekulturen.

3.2.2.3 Präparation von säurelöslichem Kollagen I aus Kalbshaut

Bei -80 °C gelagerte, fötale Kalbshaut wurde auf Eis gestellt, in 5 cm breite Streifen geschnitten und unter Zugabe von gestoßenem Eis im Fleischwolf zerkleinert.
Die Haut wurde mit kaltem Wasser aufgeschlämmt und anschließend abzentrifugiert (JA 10, 17696 x g, 30 min, 4 °C). Das Pellet (270 g) wurde mit 111 M NaCl, 50 m M Tris-HCl, pH 7,4, 20 mM EDTA, 2 mM N-Ethylmaleinmid durch ein mechanisches Rührwerk extrahiert. Die Extraktionslösung wurde zentrifugiert (JA 10, 17696 x g, 30 min, 4 °C), und der Überstand der Neutralsalzextraktion wurde aufgehoben.
Das Pellet wurde mit 1500 ml 0,5 M Essigsäure versetzt und durch Rühren mit einem mechanischen Rührwerk extrahiert. Durch Zentrifugation (JA 10, 17696 x g, 30 min, 4 °C) wurde säurelösliches Kollagen im Überstand erhalten. Dieser Überstand (1500 ml) wurde durch langsames Einstreuen mit 78,9 g festem NaCl versetzt, sodaß eine Endkonzentration von 0,9 M NaCl erreicht wurde. Die Lösung ließ man zur vollständigen Fällung weitere 6 Stunden bei 4 °C rühren. Diese Lösung wurde zentrifugiert (JA 10, 17696 x g, 30 min 4 °C).
Das Pellet, das die Kollagene I, III und V enthält, wurde mit 3000 ml 0,5 M NaCl, 0,1 M Tris, pH 10,5 versetzt und mit dem Polytron homogenisiert. Das Homogenat wurde durch Zusatz von 2 ml 8 M HCL auf pH 7-8 gebracht und weiter gerührt. Die Lösung wurde zentrifugiert (JA 10, 17696 x g, 30 min, 4 °C).
Der Überstand (315 ml) wurde durch langsames Eintragen von 22,1 g festem NaCl in die Lösung auf eine Konzentration von 1,7 M NaCl gebracht. Die Lösung wurde über Nacht bei 4 °C gerührt, und anschließend wurden weitere 300 ml des Puffers mit 1,7 M NaCl, 50 mM Tris-HCl, pH 7,4 hinzugefügt. Die Lösung wurde zur Abtrennung von Kollagen III zentrifugiert.
Der Überstand wurde mit 1,7 M NaCl, 50 mM Tris-HCl, pH 7,4 auf das doppelte Volumen verdünnt und mit Eisessig auf pH 2-3 eingestellt. Die Lösung wurde durch Zentrifugation geklärt (JA 10, 17696 x g, 30 min, 4 °C). Diese Lösung wurde dreimal gegen 210,2 M Essigsäure dialysiert und anschließend lyophilisiert. Aus der Präparation wurden 1,7 g säurelösliches Kollagen I erhalten.

3.2.3 Zink-Bestimmung nach ICP-ms-Methode und DNA Bestimmung

Die aus dem Rippenknorpel isolierten zwei Millionen Zellen wurden erst im deionisiertem Wasser aufgenommen. 100 μl dieser Suspension (entspricht 200 Tausend Zellen) wurden für DNA-Bestimmung und 900 μl für die Bestimmung der Ionenzusammensetzung durch Inductively Coupled Plasma-mass spectrometry (ICP-MS) verwendet. Die ICP-MS hat Dr. Peter Quint in Institut für Medizinische Physik und Biophysik für uns durchgeführt.

3.2.3.1 Fluorimetrische DNA-Bestimmung

Die l00 μl Probe (etwa 200 Tausend Zellen) wurden in 1,4 ml l0 mM Tris/HCl, pH 7,0, 10 mM NaCl aufgenommen. Die Zellen wurden bei -80 °C eingefroren und nach 4 Stunden wieder aufgetaut. Die aufgetauten Zellen wurden noch weiter mit Ultraschall 5 Minuten behandelt und mit 0,2mg Bisbenzimid versetzt.
Je 10 μl der drei DNA-Standard(l) und 10 μl H2O (Leerwert) wurden mit 1,5 ml Farbstofflösung(2)versetzt. Im Fluorimeter wurden nach 5-60 Minuten mit einer Anregungswellenlänge von ca. 365nm die Emissionen der Ansätze im Bereich um 450nm gemessen.

Aus den Emissionen und Konzentrationen der Standards wurde eine Eichkurve erstellt, mit deren Hilfe die Konzentration der Proben ermittelt wurde.

Reagenzien:
1. DNA-Standards: l,5 μg/ml, 1 μg/ml, 0,5 μg/ml
2. Farbstofflösung: 0,2 mg Bisbenzimid (Hoechst 33258)/1 in 10 mM Tris/HCl, pH 7,0, l0 mM NaCl
3. Eichstandard für das Fluorimeter

Jul 9th, 2009

Fragestellung der Arbeit

Posted by admin @ 8:40 am

2. Fragestellung der Arbeit

Die Spätdifferenzierung der humanen Chondrozyten im Rippenknorpel Rippenknorpel wurde bisher als Permanentknorpel ohne enchondrale Ossifikation angesehen. Neure Untersuchungen weisen jedoch daraufhin, daß kostaler Knorpel mit zunehmendem Alter ossifiziert (Koebke und Saternus, 1982 & 1985).
Deshalb ist eine Vorhersage, daß in Rippenknorpel auch Spätdifferenzierung des Knorpels stattfinden muß.
Diese Hypothese sollte in dieser Arbeit weiter verfolgt werden und die Ursache für die Ossifikation sollte besser analysiert werden.
Zinkmangel in Trichterbrustchondrozyten Rippenknorpel von Trichterbrustpatienten enthält Zink in geringeren Mengen als normaler kostaler Knorpel (Hinweis auf relevanten Einleitungsparagraphen).
Von dieser früheren Beobachtungen ausgehend, sollten der Zinkmangel in Trichterbrustchondrozyten durch quantitative Analyse bestätigt oder verworfen werden. Danach sollte ermittelt werden, Welche Ursache der verminderten Aufnahme von Zink in das Gewebe zu Grunde liegen und schließlich die biochemischen Konsequenten auf der kollagenstoffwechsel näher beobachtet werden.
Die Differenzierung der Osteoblasten-ähnlichen Zellen in dreidimensionaler Matrix Die Differenzierung und die Aufrechterhaltung des Phänotyps in der Kultur ist abhängig von Signalen der Umgebung. Diese Umgebung wirkt über zwei unterschiedliche Typen von Signalen (erstens über die Struktur der extrazellulären Matrix und zweitens über lösliche diffundierende Faktoren).
Die Rolle der dreidimensionalen Matrix bei der Differenzierung der aus Periost stammenden Osteoblasten-ähnlichen Zellen sollte in Suspensionskulturen näher erforscht werden.
Die Annahme, daß sich die Osteoblasten-ähnlichen Zellen in der dreidimensionalen Matrix anders als in der zweidimensionalen Matrix verhalten, verhilft uns zu der Idee, Osteoblastenähnlichen Zellen in der dreidimensionalen Matrix zu kultivieren. Die Signale, die von der extrazellulären Matrix in Osteoblasten-ähnlichen Zellen weitergegeben wurden, sollte einen Einfluß auf die phänotypische und biochemische Änderung der Zellen haben.
Ausgangspunkt war die Idee, die phänotypische und biochemische Änderung von Osteoblasten-ähnlichen Zellen in der adhärenten und nicht-adhärenten dreidimensionalen Matrix zu bestimmen.

Publikationen


Meta